Anbazhagan Thirumalai, Palani Sharmiladevi, Koyeli Girigoswami, Alex Daniel Prabhu, Agnishwar Girigoswami
{"title":"Tuneable carbon dots coated iron oxide nanoparticles as superior <i>T</i> <sub>1</sub> contrast agent for multimodal imaging.","authors":"Anbazhagan Thirumalai, Palani Sharmiladevi, Koyeli Girigoswami, Alex Daniel Prabhu, Agnishwar Girigoswami","doi":"10.5599/admet.2790","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Multifunctional hybrid nanoparticles garner heightened interest for prospective biomedical applications, including medical imaging and medication administration, owing to their synergistic benefits of constituent components. Therefore, we demonstrated an optimized protocol for synthesizing magnetofluorescent nanohybrids comprising fluorescent carbon dots with magnetic nanoparticles.</p><p><strong>Experimental approach: </strong>Carbon dot-coated iron oxide nanoparticles (CDs@Fe<sub>2</sub>O<sub>3</sub>) were synthesized with varying citric acid concentrations by a one-pot hydrothermal synthesis method for the development of a low-cost and biocompatible contrast agent (CA) for enhanced multimodal imaging (fluorescent and <i>T</i> <sub>1</sub> and <i>T</i> <sub>2</sub> weighted magnetic resonance imaging (MRI)) to replace the conventional CAs.</p><p><strong>Key results: </strong>The physicochemical characterization of the synthesized CDs@Fe<sub>2</sub>O<sub>3</sub> revealed that 3 g of citric acid used for the synthesis of nanoparticles, keeping Fe(II) and Fe(III) ratio 1:2 provides higher stability of -78 mV zeta potential, saturation magnetization of 24 emu/g, with a hydrodynamic diameter of 68 nm. Carbon coating affects surface spins on Fe<sub>2</sub>O<sub>3</sub>, resulting in fewer surface-based relaxation centres, making <i>T</i> <sub>1</sub> relaxation relatively more prominent. Furthermore, the surface-engineered iron oxide NPs are efficient in producing both <i>T</i> <sub>1</sub> and <i>T</i> <sub>2</sub> weighted MRI as well as fluorescence-based imaging. The molar relaxivity and molar radiant efficiency derived from phantom studies demonstrate their effectiveness in multimodal medical imaging. The cytotoxicity assay, haemolysis assay, haematology, and histopathology studies show that the optimized CDs@Fe<sub>2</sub>O<sub>3</sub> are biocompatible, haemocompatible, and negligibly toxic.</p><p><strong>Conclusion: </strong>We can conclude the significant potency of CDs@Fe<sub>2</sub>O<sub>3</sub> for multimodal diagnosis.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"13 3","pages":"2790"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205923/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADMET and DMPK","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/admet.2790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose: Multifunctional hybrid nanoparticles garner heightened interest for prospective biomedical applications, including medical imaging and medication administration, owing to their synergistic benefits of constituent components. Therefore, we demonstrated an optimized protocol for synthesizing magnetofluorescent nanohybrids comprising fluorescent carbon dots with magnetic nanoparticles.
Experimental approach: Carbon dot-coated iron oxide nanoparticles (CDs@Fe2O3) were synthesized with varying citric acid concentrations by a one-pot hydrothermal synthesis method for the development of a low-cost and biocompatible contrast agent (CA) for enhanced multimodal imaging (fluorescent and T1 and T2 weighted magnetic resonance imaging (MRI)) to replace the conventional CAs.
Key results: The physicochemical characterization of the synthesized CDs@Fe2O3 revealed that 3 g of citric acid used for the synthesis of nanoparticles, keeping Fe(II) and Fe(III) ratio 1:2 provides higher stability of -78 mV zeta potential, saturation magnetization of 24 emu/g, with a hydrodynamic diameter of 68 nm. Carbon coating affects surface spins on Fe2O3, resulting in fewer surface-based relaxation centres, making T1 relaxation relatively more prominent. Furthermore, the surface-engineered iron oxide NPs are efficient in producing both T1 and T2 weighted MRI as well as fluorescence-based imaging. The molar relaxivity and molar radiant efficiency derived from phantom studies demonstrate their effectiveness in multimodal medical imaging. The cytotoxicity assay, haemolysis assay, haematology, and histopathology studies show that the optimized CDs@Fe2O3 are biocompatible, haemocompatible, and negligibly toxic.
Conclusion: We can conclude the significant potency of CDs@Fe2O3 for multimodal diagnosis.
期刊介绍:
ADMET and DMPK is an open access journal devoted to the rapid dissemination of new and original scientific results in all areas of absorption, distribution, metabolism, excretion, toxicology and pharmacokinetics of drugs. ADMET and DMPK publishes the following types of contributions: - Original research papers - Feature articles - Review articles - Short communications and Notes - Letters to Editors - Book reviews The scope of the Journal involves, but is not limited to, the following areas: - physico-chemical properties of drugs and methods of their determination - drug permeabilities - drug absorption - drug-drug, drug-protein, drug-membrane and drug-DNA interactions - chemical stability and degradations of drugs - instrumental methods in ADMET - drug metablic processes - routes of administration and excretion of drug - pharmacokinetic/pharmacodynamic study - quantitative structure activity/property relationship - ADME/PK modelling - Toxicology screening - Transporter identification and study