Botond Gaál, Roland Takács, Csaba Matta, Krisztián Juhász, Béla Fülesdi, Zoltán Szekanecz, Szilvia Benkő, László Ducza
{"title":"The Inflammasome-miR Axis in Alzheimer's Disease and Chronic Pain: Molecular Mechanisms and Therapeutic Opportunities.","authors":"Botond Gaál, Roland Takács, Csaba Matta, Krisztián Juhász, Béla Fülesdi, Zoltán Szekanecz, Szilvia Benkő, László Ducza","doi":"10.14336/AD.2025.0353","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, synaptic dysfunction, and chronic neuroinflammation. Mounting evidence suggests that inflammasome activation plays a pivotal role in the onset and progression of AD by promoting neuronal damage, Tau pathology, and amyloid-β (Aβ) accumulation. Among the various inflammasome types expressed in the central nervous system (CNS), NLRP3 has received particular attention due to its strong association with both AD and pain-related neuroinflammation. Chronic pain, frequently observed in older adults and individuals with dementia, shares overlapping inflammatory mechanisms with AD, including glial activation and cytokine dysregulation. The inflammasome-microRNA (miR) axis has recently emerged as a key regulatory pathway modulating these neuroinflammatory responses. Specific inflammation-associated miRs, such as miR-22, miR-34a, miR-146a, miR-155, and miR-223, influence innate immune signaling and critically affect both neuronal homeostasis and pain sensitization. Emerging evidence also implicates dysfunction of the locus coeruleus-noradrenergic (LC-NE) system-an early target of AD pathology-in amplifying neuroinflammation and pain sensitivity, partly through interactions with dysregulated miRs. While previous studies have addressed the roles of inflamma-miRs in AD or chronic pain individually, this review uniquely examines their interconnected roles-highlighting how dysregulated miR expression and inflammasome activation may converge to drive persistent neuroinflammation across both conditions. By elucidating shared molecular pathways, we propose that targeting the inflammasome-miR axis may offer dual therapeutic potential: slowing AD progression while addressing pain-related neural dysfunction. As the prevalence of AD rises, such integrated insights are essential for the development of more precise, mechanism-based interventions.</p>","PeriodicalId":7434,"journal":{"name":"Aging and Disease","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14336/AD.2025.0353","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, synaptic dysfunction, and chronic neuroinflammation. Mounting evidence suggests that inflammasome activation plays a pivotal role in the onset and progression of AD by promoting neuronal damage, Tau pathology, and amyloid-β (Aβ) accumulation. Among the various inflammasome types expressed in the central nervous system (CNS), NLRP3 has received particular attention due to its strong association with both AD and pain-related neuroinflammation. Chronic pain, frequently observed in older adults and individuals with dementia, shares overlapping inflammatory mechanisms with AD, including glial activation and cytokine dysregulation. The inflammasome-microRNA (miR) axis has recently emerged as a key regulatory pathway modulating these neuroinflammatory responses. Specific inflammation-associated miRs, such as miR-22, miR-34a, miR-146a, miR-155, and miR-223, influence innate immune signaling and critically affect both neuronal homeostasis and pain sensitization. Emerging evidence also implicates dysfunction of the locus coeruleus-noradrenergic (LC-NE) system-an early target of AD pathology-in amplifying neuroinflammation and pain sensitivity, partly through interactions with dysregulated miRs. While previous studies have addressed the roles of inflamma-miRs in AD or chronic pain individually, this review uniquely examines their interconnected roles-highlighting how dysregulated miR expression and inflammasome activation may converge to drive persistent neuroinflammation across both conditions. By elucidating shared molecular pathways, we propose that targeting the inflammasome-miR axis may offer dual therapeutic potential: slowing AD progression while addressing pain-related neural dysfunction. As the prevalence of AD rises, such integrated insights are essential for the development of more precise, mechanism-based interventions.
期刊介绍:
Aging & Disease (A&D) is an open-access online journal dedicated to publishing groundbreaking research on the biology of aging, the pathophysiology of age-related diseases, and innovative therapies for conditions affecting the elderly. The scope encompasses various diseases such as Stroke, Alzheimer's disease, Parkinson’s disease, Epilepsy, Dementia, Depression, Cardiovascular Disease, Cancer, Arthritis, Cataract, Osteoporosis, Diabetes, and Hypertension. The journal welcomes studies involving animal models as well as human tissues or cells.