Doyeong Ku, Hansol Kim, JinA Lim, Jayeon Song, Junhyeok Yoon, Liu Jun, Su-Ji Min, Ryeongeun Cho, Namseok Lee, Kyunghoon Hur, Jong-Eun Park, Luke P Lee, Junshik Hong, Yoosik Kim, Hyun Gyu Park
{"title":"Self-modulating therapeutic platform using engineered miRNA-responsive oligonucleotides.","authors":"Doyeong Ku, Hansol Kim, JinA Lim, Jayeon Song, Junhyeok Yoon, Liu Jun, Su-Ji Min, Ryeongeun Cho, Namseok Lee, Kyunghoon Hur, Jong-Eun Park, Luke P Lee, Junshik Hong, Yoosik Kim, Hyun Gyu Park","doi":"10.1186/s40580-025-00499-w","DOIUrl":null,"url":null,"abstract":"<p><p>Due to a pivotal role in the post-transcriptional regulation of genes implicated in numerous diseases, miRNAs serve as promising disease biomarkers and therapeutic targets. We introduce a new oligonucleotide probe termed miRNA-trigger, which selectively downregulates newly assigned target mRNAs by hijacking specific miRNAs. By engineering the miRNA-trigger to suppress the anti-apoptotic BCL-xL gene, we induce apoptosis selectively in breast cancer cells overexpressing specific miRNAs and further validate its therapeutic efficacy in vivo, by significantly reducing the tumor volume of the xenograft mouse upon its tail-vein injection. This approach establishes a new platform for self-modulating oligonucleotide therapy by redirecting disease-associated miRNAs.</p>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":"32"},"PeriodicalIF":13.4000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12209101/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1186/s40580-025-00499-w","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to a pivotal role in the post-transcriptional regulation of genes implicated in numerous diseases, miRNAs serve as promising disease biomarkers and therapeutic targets. We introduce a new oligonucleotide probe termed miRNA-trigger, which selectively downregulates newly assigned target mRNAs by hijacking specific miRNAs. By engineering the miRNA-trigger to suppress the anti-apoptotic BCL-xL gene, we induce apoptosis selectively in breast cancer cells overexpressing specific miRNAs and further validate its therapeutic efficacy in vivo, by significantly reducing the tumor volume of the xenograft mouse upon its tail-vein injection. This approach establishes a new platform for self-modulating oligonucleotide therapy by redirecting disease-associated miRNAs.
期刊介绍:
Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects.
Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.