Dwaipayan Mukhopadhyay, Supriya Pratihar, Stefan Becker, Christian Griesinger
{"title":"Extending the detectable time window of fast protein dynamics using <sup>1</sup>H<sub>N</sub> E-CPMG.","authors":"Dwaipayan Mukhopadhyay, Supriya Pratihar, Stefan Becker, Christian Griesinger","doi":"10.1007/s10858-025-00470-1","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in high power NMR relaxation dispersion experiments have significantly enhanced our ability to study fast µs timescale motions in proteins, which are crucial for understanding their biological functions. Here, we have extended the detectable time window of such fast dynamics with the development of extreme power <sup>1</sup>H Carr-Purcell-Meiboom-Gill (<sup>1</sup>H E-CPMG) experiments targeted at the backbone amide protons (<sup>1</sup>H<sub>N</sub>). Using this methodology, artifact-free relaxation dispersion profiles can be obtained up to extreme pulsing conditions with minimal setup effort using commonly used standard NMR hardware. We demonstrate the utility of ¹H E-CPMG on human ubiquitin, revealing that the previously reported peptide flip motion influences a larger region of the protein backbone than previously recognized. Additionally, we directly observed a faster dynamic process at residue T09, aligning with previously predicted pincer mode motion. These findings underscore the effectiveness of <sup>1</sup>H E-CPMG in extending the temporal resolution at which biologically relevant fast protein dynamics can be studied.</p>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10858-025-00470-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in high power NMR relaxation dispersion experiments have significantly enhanced our ability to study fast µs timescale motions in proteins, which are crucial for understanding their biological functions. Here, we have extended the detectable time window of such fast dynamics with the development of extreme power 1H Carr-Purcell-Meiboom-Gill (1H E-CPMG) experiments targeted at the backbone amide protons (1HN). Using this methodology, artifact-free relaxation dispersion profiles can be obtained up to extreme pulsing conditions with minimal setup effort using commonly used standard NMR hardware. We demonstrate the utility of ¹H E-CPMG on human ubiquitin, revealing that the previously reported peptide flip motion influences a larger region of the protein backbone than previously recognized. Additionally, we directly observed a faster dynamic process at residue T09, aligning with previously predicted pincer mode motion. These findings underscore the effectiveness of 1H E-CPMG in extending the temporal resolution at which biologically relevant fast protein dynamics can be studied.
期刊介绍:
The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include:
Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR.
New NMR techniques for studies of biological macromolecules.
Novel approaches to computer-aided automated analysis of multidimensional NMR spectra.
Computational methods for the structural interpretation of NMR data, including structure refinement.
Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals.
New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.