{"title":"Microbiota and methanogenic activities in an anaerobic internal circulation reactor: insights into biogas production from brewery wastewater.","authors":"Cecilia Callejas, Leandro Guerrero, Leonardo Erijman, Iván López, Liliana Borzacconi","doi":"10.1007/s10532-025-10153-1","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we analyzed the prokaryotic community and methanogenic activities in sludge samples collected from a full-scale internal circulation (IC) reactor used to treat brewery wastewater. The reactor performance was monitored over 15 months, and specific methanogenic activities were periodically measured in fresh sludge samples using CO<sub>2</sub>/H<sub>2</sub> or acetate as substrates. The maximum hydrogenotrophic activities were consistently higher than maximum acetoclastic activities, suggesting the relevance of hydrogenotrophic methanogens in the sludge. Over six months, the prokaryotic community present in four sludge samples was analyzed using amplicon libraries and metagenomics. V4-16S rRNA amplicon libraries revealed the presence of a diverse microbial community dominated by Firmicutes and Bacteroidetes among bacterial phyla, and Halobacterota and Euryarchaeota among archaea. Furthermore, the 16S libraries constructed with cDNA were consistent with the methanogenic activity assays. A genome-centric metagenomics approach was used to assemble 42 high-quality metagenome-assembled genomes (MAGs), among which Methanothrix and Methanobacterium were the dominant archaeal members, and Acidobacteriota, Synergistota, Krumholzibacteriota, and Nitrospirota phyla were among the bacteria. Potential acetogenic members were explored via the fths gene; 15 MAGs contained this marker gene. A combination of methanogenic activity tests, amplicon libraries, and MAG analysis was used to gain insights into the prokaryotic structure and functional potential of the microbial community driving methane production in the reactor.</p>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 4","pages":"56"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10532-025-10153-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we analyzed the prokaryotic community and methanogenic activities in sludge samples collected from a full-scale internal circulation (IC) reactor used to treat brewery wastewater. The reactor performance was monitored over 15 months, and specific methanogenic activities were periodically measured in fresh sludge samples using CO2/H2 or acetate as substrates. The maximum hydrogenotrophic activities were consistently higher than maximum acetoclastic activities, suggesting the relevance of hydrogenotrophic methanogens in the sludge. Over six months, the prokaryotic community present in four sludge samples was analyzed using amplicon libraries and metagenomics. V4-16S rRNA amplicon libraries revealed the presence of a diverse microbial community dominated by Firmicutes and Bacteroidetes among bacterial phyla, and Halobacterota and Euryarchaeota among archaea. Furthermore, the 16S libraries constructed with cDNA were consistent with the methanogenic activity assays. A genome-centric metagenomics approach was used to assemble 42 high-quality metagenome-assembled genomes (MAGs), among which Methanothrix and Methanobacterium were the dominant archaeal members, and Acidobacteriota, Synergistota, Krumholzibacteriota, and Nitrospirota phyla were among the bacteria. Potential acetogenic members were explored via the fths gene; 15 MAGs contained this marker gene. A combination of methanogenic activity tests, amplicon libraries, and MAG analysis was used to gain insights into the prokaryotic structure and functional potential of the microbial community driving methane production in the reactor.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.