Interfacial Engineering of 2D-2D CdIn2S4/Ti3C2 Heterojunctions for Enhanced Photocatalytic Hydrogen Generation.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Sanmilan Jyoti Kalita, Hafijul Islam, Sagar Varangane, B Moses Abraham, Ujjwal Pal, Lakshi Saikia
{"title":"Interfacial Engineering of 2D-2D CdIn<sub>2</sub>S<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub> Heterojunctions for Enhanced Photocatalytic Hydrogen Generation.","authors":"Sanmilan Jyoti Kalita, Hafijul Islam, Sagar Varangane, B Moses Abraham, Ujjwal Pal, Lakshi Saikia","doi":"10.1002/smtd.202500715","DOIUrl":null,"url":null,"abstract":"<p><p>Utilization of solar energy through wireless water-splitting technology offers a promising pathway toward a sustainable and environmentally conscious future. The rational design of 2D-2D heterojunctions leverages synergistic effects to optimize charge carrier dynamics, thereby boosting photocatalytic activity. In this study, well-engineered heterojunction Ti<sub>3</sub>C<sub>2</sub>/CdIn<sub>2</sub>S<sub>4</sub> (TCIS) nanocomposites are synthesized via an in situ hydrothermal method and employed in photocatalytic hydrogen evolution (PHE). The hydrogen evolution rate of 9.799 mmol g<sup>-1</sup> h<sup>-1</sup> surpasses previously reported MXene-based materials, and is 26 times higher than pristine CdIn<sub>2</sub>S<sub>4</sub>, with an AQE of 6.4% under 420 nm light irradiation. Optimizing the electronic structure of active metal sites enhances rapid electron transport and synergistic proton reduction. With insights from DFT and KPFM studies, an efficient charge transfer pathway, with electron accumulation on Ti<sub>3</sub>C<sub>2</sub> and depletion on CdIn<sub>2</sub>S<sub>4</sub> are revealed. This study highlights the critical role of interfacial engineering in MXenes for accelerating water dissociation and presents a promising strategy for the development of high-performance materials for future energy applications.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500715"},"PeriodicalIF":10.7000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500715","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Utilization of solar energy through wireless water-splitting technology offers a promising pathway toward a sustainable and environmentally conscious future. The rational design of 2D-2D heterojunctions leverages synergistic effects to optimize charge carrier dynamics, thereby boosting photocatalytic activity. In this study, well-engineered heterojunction Ti3C2/CdIn2S4 (TCIS) nanocomposites are synthesized via an in situ hydrothermal method and employed in photocatalytic hydrogen evolution (PHE). The hydrogen evolution rate of 9.799 mmol g-1 h-1 surpasses previously reported MXene-based materials, and is 26 times higher than pristine CdIn2S4, with an AQE of 6.4% under 420 nm light irradiation. Optimizing the electronic structure of active metal sites enhances rapid electron transport and synergistic proton reduction. With insights from DFT and KPFM studies, an efficient charge transfer pathway, with electron accumulation on Ti3C2 and depletion on CdIn2S4 are revealed. This study highlights the critical role of interfacial engineering in MXenes for accelerating water dissociation and presents a promising strategy for the development of high-performance materials for future energy applications.

2D-2D CdIn2S4/Ti3C2异质结增强光催化制氢的界面工程
通过无线水分解技术利用太阳能为实现可持续和环保的未来提供了一条有希望的途径。2D-2D异质结的合理设计利用协同效应优化载流子动力学,从而提高光催化活性。本研究采用原位水热法制备了异质结Ti3C2/CdIn2S4 (TCIS)纳米复合材料,并将其应用于光催化析氢(PHE)。在420 nm光照射下,该材料的析氢速率为9.799 mmol g-1 h-1,是原始CdIn2S4的26倍,AQE为6.4%。优化活性金属位的电子结构可以提高电子的快速传递和质子的协同还原。结合DFT和KPFM的研究,揭示了Ti3C2上电子积累和CdIn2S4上电子耗尽的有效电荷转移途径。这项研究强调了界面工程在MXenes中加速水解离的关键作用,并为未来能源应用的高性能材料的开发提供了一个有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信