The modification of ZnO with 2D g-C3N5 as electron transport layer for high-performance and stable organic solar cells.

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-06-30 DOI:10.1002/cssc.202500889
Song Yang, Shengwei Shi, Huangzhong Yu
{"title":"The modification of ZnO with 2D g-C3N5 as electron transport layer for high-performance and stable organic solar cells.","authors":"Song Yang, Shengwei Shi, Huangzhong Yu","doi":"10.1002/cssc.202500889","DOIUrl":null,"url":null,"abstract":"<p><p>ZnO has been traditionally applied in organic solar cells (OSCs) as electron transport layer (ETL). However, inevitable vacancy defects existed on the surface of ZnO will result in trap-assisted recombination centers and thus low efficient electron transport in OSCs. Herein, an effective and facile method has been developed to modify the ZnO surface with two-dimensional (2D) g-C3N5 for high-performance and stable OSCs. The results show that 2D g-C3N5 can effectively passivate various defects on the surface of ZnO, such as oxygen vacancies and -OH, leading to the reduction of the work function of ZnO layer. The combination of theoretical calculations and experimental characterizations reveals charge transfer mechanism between g-C3N5 and ZnO surface and physical mechanism of oxygen vacancy filling in ZnO. Furthermore, with 1 wt% g-C3N5-modified ZnO as the ETL, inverted OSCs based on PM6: BTP-eC9 and PM6:L8-BO:BTP-eC9 exhibit the highest power conversion efficiency (PCE) of 18.15% and 18.84%, respectively, which is much higher than that for the corresponding reference devices without the modified ETL (16.37% and 17.63%). Therefore, this study provides an effective and facile way for the defect modification of ZnO by 2D materials, and offers a deep understanding of the passivation mechanism of ZnO defects.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500889"},"PeriodicalIF":6.6000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500889","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

ZnO has been traditionally applied in organic solar cells (OSCs) as electron transport layer (ETL). However, inevitable vacancy defects existed on the surface of ZnO will result in trap-assisted recombination centers and thus low efficient electron transport in OSCs. Herein, an effective and facile method has been developed to modify the ZnO surface with two-dimensional (2D) g-C3N5 for high-performance and stable OSCs. The results show that 2D g-C3N5 can effectively passivate various defects on the surface of ZnO, such as oxygen vacancies and -OH, leading to the reduction of the work function of ZnO layer. The combination of theoretical calculations and experimental characterizations reveals charge transfer mechanism between g-C3N5 and ZnO surface and physical mechanism of oxygen vacancy filling in ZnO. Furthermore, with 1 wt% g-C3N5-modified ZnO as the ETL, inverted OSCs based on PM6: BTP-eC9 and PM6:L8-BO:BTP-eC9 exhibit the highest power conversion efficiency (PCE) of 18.15% and 18.84%, respectively, which is much higher than that for the corresponding reference devices without the modified ETL (16.37% and 17.63%). Therefore, this study provides an effective and facile way for the defect modification of ZnO by 2D materials, and offers a deep understanding of the passivation mechanism of ZnO defects.

用二维g-C3N5作为电子传输层修饰ZnO制备高性能稳定的有机太阳能电池。
传统上,ZnO作为电子传输层应用于有机太阳能电池(OSCs)中。然而,ZnO表面存在不可避免的空位缺陷会导致陷阱辅助复合中心的形成,从而导致OSCs中电子传递效率低下。本文提出了一种简单有效的方法,利用二维g-C3N5修饰ZnO表面,制备高性能稳定的OSCs。结果表明:2D g-C3N5能有效钝化ZnO表面的各种缺陷,如氧空位和-OH,导致ZnO层的功函数降低;理论计算与实验表征相结合,揭示了g-C3N5与ZnO表面的电荷转移机理和氧化锌中氧空位填充的物理机制。此外,以1 wt% g- c3n5修饰ZnO为ETL时,基于PM6: BTP-eC9和PM6:L8-BO:BTP-eC9的倒转OSCs的功率转换效率(PCE)最高,分别为18.15%和18.84%,远高于未修饰ETL的相应参考器件(16.37%和17.63%)。因此,本研究为利用二维材料对ZnO缺陷进行改性提供了一种有效而简便的方法,并对ZnO缺陷的钝化机理有了深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信