{"title":"The modification of ZnO with 2D g-C3N5 as electron transport layer for high-performance and stable organic solar cells.","authors":"Song Yang, Shengwei Shi, Huangzhong Yu","doi":"10.1002/cssc.202500889","DOIUrl":null,"url":null,"abstract":"<p><p>ZnO has been traditionally applied in organic solar cells (OSCs) as electron transport layer (ETL). However, inevitable vacancy defects existed on the surface of ZnO will result in trap-assisted recombination centers and thus low efficient electron transport in OSCs. Herein, an effective and facile method has been developed to modify the ZnO surface with two-dimensional (2D) g-C3N5 for high-performance and stable OSCs. The results show that 2D g-C3N5 can effectively passivate various defects on the surface of ZnO, such as oxygen vacancies and -OH, leading to the reduction of the work function of ZnO layer. The combination of theoretical calculations and experimental characterizations reveals charge transfer mechanism between g-C3N5 and ZnO surface and physical mechanism of oxygen vacancy filling in ZnO. Furthermore, with 1 wt% g-C3N5-modified ZnO as the ETL, inverted OSCs based on PM6: BTP-eC9 and PM6:L8-BO:BTP-eC9 exhibit the highest power conversion efficiency (PCE) of 18.15% and 18.84%, respectively, which is much higher than that for the corresponding reference devices without the modified ETL (16.37% and 17.63%). Therefore, this study provides an effective and facile way for the defect modification of ZnO by 2D materials, and offers a deep understanding of the passivation mechanism of ZnO defects.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500889"},"PeriodicalIF":6.6000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500889","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ZnO has been traditionally applied in organic solar cells (OSCs) as electron transport layer (ETL). However, inevitable vacancy defects existed on the surface of ZnO will result in trap-assisted recombination centers and thus low efficient electron transport in OSCs. Herein, an effective and facile method has been developed to modify the ZnO surface with two-dimensional (2D) g-C3N5 for high-performance and stable OSCs. The results show that 2D g-C3N5 can effectively passivate various defects on the surface of ZnO, such as oxygen vacancies and -OH, leading to the reduction of the work function of ZnO layer. The combination of theoretical calculations and experimental characterizations reveals charge transfer mechanism between g-C3N5 and ZnO surface and physical mechanism of oxygen vacancy filling in ZnO. Furthermore, with 1 wt% g-C3N5-modified ZnO as the ETL, inverted OSCs based on PM6: BTP-eC9 and PM6:L8-BO:BTP-eC9 exhibit the highest power conversion efficiency (PCE) of 18.15% and 18.84%, respectively, which is much higher than that for the corresponding reference devices without the modified ETL (16.37% and 17.63%). Therefore, this study provides an effective and facile way for the defect modification of ZnO by 2D materials, and offers a deep understanding of the passivation mechanism of ZnO defects.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology