Spin Polarization and Barrier Synergy: New Paradigms in Catalytic Science.

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-06-28 DOI:10.1002/cssc.202501164
Rubo Fang, Zixiang Xing, Qingpo Yang, Xurui Li, Qingtao Wang, Feng Feng, Chunshan Lu, Guilin Zhuang, Qunfeng Zhang, Xiaonian Li
{"title":"Spin Polarization and Barrier Synergy: New Paradigms in Catalytic Science.","authors":"Rubo Fang, Zixiang Xing, Qingpo Yang, Xurui Li, Qingtao Wang, Feng Feng, Chunshan Lu, Guilin Zhuang, Qunfeng Zhang, Xiaonian Li","doi":"10.1002/cssc.202501164","DOIUrl":null,"url":null,"abstract":"<p><p>Electron-spin catalysis is emerging as a powerful strategy to tune reaction pathways by leveraging the quantum property of electron-spin. Unlike traditional approaches that rely on compositional changes or surface engineering, spin-modulation enables precise control over intermediate adsorption and energy-barriers without altering the catalyst's chemical structure. A central concept is spin-barrier synergy, where spin-polarization lowers activation energies in rate-determining steps, offering broad benefits across catalytic systems. This review outlines the fundamental mechanisms underpinning spin catalysis, including spin-polarization, spin-orbit coupling, and exchange interactions. We summarize recent advances in controlling spin states through external fields (magnetic, electric, thermal,  optical) and chemical methods such as doping, defect engineering, coordination tuning, and chiral modification. These strategies are discussed in the context of enhancing catalytic activity, selectivity, and stability, with examples drawn from photocatalysis, electrocatalysis, thermocatalysis, and single atom catalysis. We also examine key challenges, including maintaining spin coherence under realistic conditions, improving in situ spin-state detection, and scaling spin regulated systems for practical deployment. Finally, we highlight the potential of quantum computing and machine learning in accelerating spin catalyst design and performance prediction. By integrating theoretical principles with real-world considerations, this review provides a roadmap for advancing spin catalysis from conceptual exploration to technological application.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501164"},"PeriodicalIF":6.6000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501164","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electron-spin catalysis is emerging as a powerful strategy to tune reaction pathways by leveraging the quantum property of electron-spin. Unlike traditional approaches that rely on compositional changes or surface engineering, spin-modulation enables precise control over intermediate adsorption and energy-barriers without altering the catalyst's chemical structure. A central concept is spin-barrier synergy, where spin-polarization lowers activation energies in rate-determining steps, offering broad benefits across catalytic systems. This review outlines the fundamental mechanisms underpinning spin catalysis, including spin-polarization, spin-orbit coupling, and exchange interactions. We summarize recent advances in controlling spin states through external fields (magnetic, electric, thermal,  optical) and chemical methods such as doping, defect engineering, coordination tuning, and chiral modification. These strategies are discussed in the context of enhancing catalytic activity, selectivity, and stability, with examples drawn from photocatalysis, electrocatalysis, thermocatalysis, and single atom catalysis. We also examine key challenges, including maintaining spin coherence under realistic conditions, improving in situ spin-state detection, and scaling spin regulated systems for practical deployment. Finally, we highlight the potential of quantum computing and machine learning in accelerating spin catalyst design and performance prediction. By integrating theoretical principles with real-world considerations, this review provides a roadmap for advancing spin catalysis from conceptual exploration to technological application.

自旋极化和势垒协同:催化科学的新范式。
电子自旋催化是利用电子自旋的量子特性来调整反应途径的一种强有力的策略。与依赖于成分变化或表面工程的传统方法不同,自旋调制可以在不改变催化剂化学结构的情况下精确控制中间吸附和能量屏障。一个核心概念是自旋势垒协同作用,其中自旋极化降低了速率决定步骤的活化能,在催化系统中提供了广泛的好处。本文综述了自旋催化的基本机制,包括自旋极化、自旋轨道耦合和交换相互作用。我们总结了通过外场(磁、电、热、光)和化学方法控制自旋态的最新进展,如掺杂、缺陷工程、配位调谐和手性修饰。这些策略在提高催化活性、选择性和稳定性的背景下进行了讨论,并从光催化、电催化、热催化和单原子催化中提取了例子。我们还研究了关键挑战,包括在现实条件下保持自旋相干性,改进原位自旋状态检测,以及缩放自旋调节系统以用于实际部署。最后,我们强调了量子计算和机器学习在加速自旋催化剂设计和性能预测方面的潜力。通过将理论原理与现实考虑相结合,本文综述了自旋催化从概念探索到技术应用的发展路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信