Xolography for Rapid Volumetric Production of Objects from the Nanoscopic to Macroscopic Length Scales.

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xichuan Li, Yuan Xiu, Kenny Lee, Jin Zhang, Nathaniel Corrigan, Cyrille Boyer
{"title":"Xolography for Rapid Volumetric Production of Objects from the Nanoscopic to Macroscopic Length Scales.","authors":"Xichuan Li, Yuan Xiu, Kenny Lee, Jin Zhang, Nathaniel Corrigan, Cyrille Boyer","doi":"10.1002/adma.202503245","DOIUrl":null,"url":null,"abstract":"<p><p>Light-mediated 3D printing has revolutionized additive manufacturing, progressing from pointwise stereolithography, to layer-by-layer digital light processing, and most recently to volumetric 3D printing. Xolography, a novel light-sheet-based volumetric 3D printing approach, offers high-speed and high-precision fabrication of complex geometries unattainable with traditional methods. However, achieving nanoscale control (<100 nm) within these 3D printing systems remains unexplored. This work leverages polymerization-induced microphase separation (PIMS) within the xolography process to prepare network polymer materials with simultaneous control over feature sizes at the nano-, micro-, and macro-scale. By controlling the chain length and mass fraction of macromolecular chain transfer agents used in the PIMS process, precise manipulation of nanodomain size within 3D printed materials is demonstrated, while optimization of the other resin components enables the fabrication of rigid materials with feature sizes of 80 µm. Critically, the rapid one-step fabrication of complex and multi-component structures such as a functional waterwheel with interlocking parts, at high volume-building rates is showcased. This combined approach expands the design space for functional nanomaterials, opening new avenues for applications in diverse fields such as polymer electrolyte membranes, biomedical delivery systems, and semi-permeable microcapsules.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2503245"},"PeriodicalIF":26.8000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202503245","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Light-mediated 3D printing has revolutionized additive manufacturing, progressing from pointwise stereolithography, to layer-by-layer digital light processing, and most recently to volumetric 3D printing. Xolography, a novel light-sheet-based volumetric 3D printing approach, offers high-speed and high-precision fabrication of complex geometries unattainable with traditional methods. However, achieving nanoscale control (<100 nm) within these 3D printing systems remains unexplored. This work leverages polymerization-induced microphase separation (PIMS) within the xolography process to prepare network polymer materials with simultaneous control over feature sizes at the nano-, micro-, and macro-scale. By controlling the chain length and mass fraction of macromolecular chain transfer agents used in the PIMS process, precise manipulation of nanodomain size within 3D printed materials is demonstrated, while optimization of the other resin components enables the fabrication of rigid materials with feature sizes of 80 µm. Critically, the rapid one-step fabrication of complex and multi-component structures such as a functional waterwheel with interlocking parts, at high volume-building rates is showcased. This combined approach expands the design space for functional nanomaterials, opening new avenues for applications in diverse fields such as polymer electrolyte membranes, biomedical delivery systems, and semi-permeable microcapsules.

用于从纳米尺度到宏观尺度的物体的快速体积生产的Xolography。
光介导的3D打印已经彻底改变了增材制造,从点式立体光刻到逐层数字光处理,再到最近的体积3D打印。Xolography是一种新型的基于薄片的体积3D打印方法,提供了传统方法无法实现的复杂几何形状的高速高精度制造。然而,实现纳米级控制(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信