Guodong Gong, You Zhou, Qingxiu Li, Wenyu Zhao, Sunyingyue Geng, Hangfei Li, Yan-Bing Leng, Shirui Zhu, Guanglong Ding, Yongbiao Zhai, Ziyu Lv, Ye Zhou, Su-Ting Han
{"title":"Bioinspired Adaptive Sensors: A Review on Current Developments in Theory and Application.","authors":"Guodong Gong, You Zhou, Qingxiu Li, Wenyu Zhao, Sunyingyue Geng, Hangfei Li, Yan-Bing Leng, Shirui Zhu, Guanglong Ding, Yongbiao Zhai, Ziyu Lv, Ye Zhou, Su-Ting Han","doi":"10.1002/adma.202505420","DOIUrl":null,"url":null,"abstract":"<p><p>The human perception system features many dynamic functional mechanisms that efficiently process the large amount of sensory information available in the surrounding environment. In this system, sensory adaptation operates as a core mechanism that seamlessly filters familiar and inconsequential external stimuli at sensory endpoints. Such adaptive filtering minimizes redundant data movement between sensory terminals and cortical processing units and contributes to a lower communication bandwidth requirement and lower energy consumption at the system level. Recreating the behavior of sensory adaptation using electronic devices has garnered significant research interest owing to its promising prospects in next-generation intelligent perception platforms. Herein, the recent progress in bioinspired adaptive device engineering is systematically examined, and its valuable applications in electronic skins, wearable electronics, and machine vision are highlighted. The rapid development of bioinspired adaptive sensors can be attributed not only to the recent advances in emerging neuromorphic electronic elements, including piezoelectric and triboelectric sensors, memristive devices, and neuromorphic transistors, but also to the improved understanding of biological sensory adaptation. Existing challenges hindering device performance optimization, multimodal adaptive sensor development, and system-level integration are also discussed, providing insights for the development of high-performance neuromorphic sensing systems.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2505420"},"PeriodicalIF":27.4000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202505420","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The human perception system features many dynamic functional mechanisms that efficiently process the large amount of sensory information available in the surrounding environment. In this system, sensory adaptation operates as a core mechanism that seamlessly filters familiar and inconsequential external stimuli at sensory endpoints. Such adaptive filtering minimizes redundant data movement between sensory terminals and cortical processing units and contributes to a lower communication bandwidth requirement and lower energy consumption at the system level. Recreating the behavior of sensory adaptation using electronic devices has garnered significant research interest owing to its promising prospects in next-generation intelligent perception platforms. Herein, the recent progress in bioinspired adaptive device engineering is systematically examined, and its valuable applications in electronic skins, wearable electronics, and machine vision are highlighted. The rapid development of bioinspired adaptive sensors can be attributed not only to the recent advances in emerging neuromorphic electronic elements, including piezoelectric and triboelectric sensors, memristive devices, and neuromorphic transistors, but also to the improved understanding of biological sensory adaptation. Existing challenges hindering device performance optimization, multimodal adaptive sensor development, and system-level integration are also discussed, providing insights for the development of high-performance neuromorphic sensing systems.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.