MXene-Engineered Cs2AgBiBr6 Perovskite Solar Cells: Rational Screening and Interfacial Dynamics for Lead-Free Photovoltaics.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lin Yang, Tianfang Zheng, Ziyan Liu, Naoyuki Shibayama, Peng Li, Jiangang Ma, Xintong Zhang, Hancheng Zhu, Xiao-Feng Wang, Haiyang Xu, Yichun Liu
{"title":"MXene-Engineered Cs<sub>2</sub>AgBiBr<sub>6</sub> Perovskite Solar Cells: Rational Screening and Interfacial Dynamics for Lead-Free Photovoltaics.","authors":"Lin Yang, Tianfang Zheng, Ziyan Liu, Naoyuki Shibayama, Peng Li, Jiangang Ma, Xintong Zhang, Hancheng Zhu, Xiao-Feng Wang, Haiyang Xu, Yichun Liu","doi":"10.1002/advs.202506567","DOIUrl":null,"url":null,"abstract":"<p><p>MXenes have demonstrated exceptional performance in energy applications, yet their potential in photovoltaic systems, particularly in lead-free perovskite solar cells (PSCs), remains underexplored, with no strategic studies addressing how MXene composition influences critical photovoltaic performance. Here, we present the first strategic screening of M<sub>2</sub>X-type MXenes (including Hf<sub>2</sub>CT<sub>x</sub>, Zr<sub>2</sub>CT<sub>x</sub>, Ta<sub>2</sub>CT<sub>x</sub>, Nb<sub>2</sub>CT<sub>x</sub>, Mo<sub>2</sub>CT<sub>x</sub>, and V<sub>2</sub>CT<sub>x</sub>) for rational heterojunction design with Cs<sub>2</sub>AgBiBr<sub>6</sub>, focusing on the interplay between properties of MXenes and photovoltaic performance. Density functional theory (DFT) calculations reveal that MXenes can induce substantial electronic states near the Fermi level, creating superior charge transfer paths in Cs<sub>2</sub>AgBiBr<sub>6</sub>, with V<sub>2</sub>CT<sub>x</sub> exhibiting the lowest interfacial contact barrier and the highest carrier transfer efficiency. Complementary ab initio molecular dynamics (AIMD) simulations coupled with X-ray photoelectron spectroscopy analyses further demonstrate that the functional termination groups like ─F in MXenes effectively passivate Br vacancies in Cs<sub>2</sub>AgBiBr<sub>6</sub>, thereby enhancing crystallization and suppressing defect densities. Consequently, the experimental results yielded a trend in line with the calculations, and the power conversion efficiency (PCE) of the device with V<sub>2</sub>CT<sub>x</sub> represented a 36% improvement, accompanied by exceptional stability. By establishing quantitative structure-property relationships between MXenes and Cs<sub>2</sub>AgBiBr<sub>6</sub>, this work provides a universal materials selection paradigm for developing high-performance, environmentally-friendly photovoltaic technologies.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e06567"},"PeriodicalIF":14.3000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202506567","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

MXenes have demonstrated exceptional performance in energy applications, yet their potential in photovoltaic systems, particularly in lead-free perovskite solar cells (PSCs), remains underexplored, with no strategic studies addressing how MXene composition influences critical photovoltaic performance. Here, we present the first strategic screening of M2X-type MXenes (including Hf2CTx, Zr2CTx, Ta2CTx, Nb2CTx, Mo2CTx, and V2CTx) for rational heterojunction design with Cs2AgBiBr6, focusing on the interplay between properties of MXenes and photovoltaic performance. Density functional theory (DFT) calculations reveal that MXenes can induce substantial electronic states near the Fermi level, creating superior charge transfer paths in Cs2AgBiBr6, with V2CTx exhibiting the lowest interfacial contact barrier and the highest carrier transfer efficiency. Complementary ab initio molecular dynamics (AIMD) simulations coupled with X-ray photoelectron spectroscopy analyses further demonstrate that the functional termination groups like ─F in MXenes effectively passivate Br vacancies in Cs2AgBiBr6, thereby enhancing crystallization and suppressing defect densities. Consequently, the experimental results yielded a trend in line with the calculations, and the power conversion efficiency (PCE) of the device with V2CTx represented a 36% improvement, accompanied by exceptional stability. By establishing quantitative structure-property relationships between MXenes and Cs2AgBiBr6, this work provides a universal materials selection paradigm for developing high-performance, environmentally-friendly photovoltaic technologies.

mxene工程Cs2AgBiBr6钙钛矿太阳能电池:无铅光伏的合理筛选和界面动力学。
MXene在能源应用中表现出卓越的性能,但其在光伏系统中的潜力,特别是在无铅钙钛矿太阳能电池(PSCs)中的潜力仍未得到充分开发,没有关于MXene成分如何影响关键光伏性能的战略研究。在这里,我们提出了m2x型MXenes(包括Hf2CTx, Zr2CTx, Ta2CTx, Nb2CTx, Mo2CTx和V2CTx)的首次战略筛选,用于与Cs2AgBiBr6进行合理的异质结设计,重点研究了MXenes性质与光伏性能之间的相互作用。密度泛函理论(DFT)计算表明,MXenes可以在费米能级附近诱导大量电子态,在Cs2AgBiBr6中创建优越的电荷转移路径,其中V2CTx表现出最低的界面接触势垒和最高的载流子转移效率。互补从头算分子动力学(AIMD)模拟和x射线光电子能谱分析进一步表明,MXenes中的F等官能团有效地钝化了Cs2AgBiBr6中的Br空位,从而增强了结晶并抑制了缺陷密度。因此,实验结果与计算结果一致,V2CTx器件的功率转换效率(PCE)提高了36%,并且具有出色的稳定性。通过建立MXenes和Cs2AgBiBr6之间的定量结构-性能关系,本研究为开发高性能、环保光伏技术提供了一种通用的材料选择范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信