Seyed Aliakbar Hosseini Toopghara, Shahin Bonakdar, Sara Nayyeri, Morteza Mehrjoo, Fatemeh Ale Ebrahim, Hossein Aminianfar, Farzad Mohammadian Sabour, Leila Montazeri, Mohammad Amin Hajari, Mohammad Ali Shokrgozar, Sang-Won Park, Mohammad Mehdi Dehghan
{"title":"The regenerative capacity of cell imprinting and collagen/PCL scaffolds in gastrocnemius tendon defect.","authors":"Seyed Aliakbar Hosseini Toopghara, Shahin Bonakdar, Sara Nayyeri, Morteza Mehrjoo, Fatemeh Ale Ebrahim, Hossein Aminianfar, Farzad Mohammadian Sabour, Leila Montazeri, Mohammad Amin Hajari, Mohammad Ali Shokrgozar, Sang-Won Park, Mohammad Mehdi Dehghan","doi":"10.1039/d5bm00534e","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic tendon injuries are among the most common types of injuries, often characterized by insufficient and slow recovery. The current study aims to evaluate the regenerative capacity of a tissue-engineered tendon graft in a rabbit gastrocnemius tendon defect. This graft comprises gap-electrospun collagen-coated parallel polycaprolactone (PCL) fibers seeded with adipose-derived stem cells (ADSCs), which promoted to adopt a tenogenic phenotype using a tenocyte-imprinted substrate for the first time. Scanning electron microscopy (SEM) images confirmed the parallel structure and successful cell attachment to the scaffold. Sirius red staining, high-performance X-ray photoelectron spectroscopy, and water contact angle showed that collagen successfully coated and changed the surface hydrophilicity of the scaffold. Imprinted substrates showed tenocyte patterns in SEM images. In an <i>in vitro</i> evaluation, ICC and real-time polymerase chain reaction confirmed that the stem cells acquired tenogenic traits. In addition, histopathology scoring outcomes showed significant improvement in the Pattern group and an almost 2.58 times increase in the total score average compared to the control group. <i>In vitro</i> and <i>in vivo</i> therapy results show that differentiated ADSCs seeded on the collagen-coated PCL scaffold for tendon repair have astounding therapeutic potential.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5bm00534e","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Traumatic tendon injuries are among the most common types of injuries, often characterized by insufficient and slow recovery. The current study aims to evaluate the regenerative capacity of a tissue-engineered tendon graft in a rabbit gastrocnemius tendon defect. This graft comprises gap-electrospun collagen-coated parallel polycaprolactone (PCL) fibers seeded with adipose-derived stem cells (ADSCs), which promoted to adopt a tenogenic phenotype using a tenocyte-imprinted substrate for the first time. Scanning electron microscopy (SEM) images confirmed the parallel structure and successful cell attachment to the scaffold. Sirius red staining, high-performance X-ray photoelectron spectroscopy, and water contact angle showed that collagen successfully coated and changed the surface hydrophilicity of the scaffold. Imprinted substrates showed tenocyte patterns in SEM images. In an in vitro evaluation, ICC and real-time polymerase chain reaction confirmed that the stem cells acquired tenogenic traits. In addition, histopathology scoring outcomes showed significant improvement in the Pattern group and an almost 2.58 times increase in the total score average compared to the control group. In vitro and in vivo therapy results show that differentiated ADSCs seeded on the collagen-coated PCL scaffold for tendon repair have astounding therapeutic potential.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.