Tuning Alignment, Strength, and Toughness in Functional Cellulose:Helux Filaments: A Molecular Trade-Off.

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Saeed Davoodi, Faridah Namata, Tomas Rosén, Stephan V Roth, Michael Malkoch, L Daniel Söderberg, Fredrik Lundell
{"title":"Tuning Alignment, Strength, and Toughness in Functional Cellulose:Helux Filaments: A Molecular Trade-Off.","authors":"Saeed Davoodi, Faridah Namata, Tomas Rosén, Stephan V Roth, Michael Malkoch, L Daniel Söderberg, Fredrik Lundell","doi":"10.1021/acs.biomac.5c00128","DOIUrl":null,"url":null,"abstract":"<p><p>The complex architecture of wood motivates studies of bioinspired materials that combine strength, toughness, and mechanical integrity. We explore the interplay between nanofiber alignment and molecular interactions in composite filaments formed from cellulose nanofibers (CNFs) and a dendritic polyampholyte, Helux. Helux enhances strength by 60% and increases toughness 5-fold through ionic bonding and thermal covalent cross-linking. However, wide-angle X-ray scattering (WAXS) reveals reduced nanofiber alignment in Helux-containing samples, resulting in a 25% decrease in stiffness─highlighting a trade-off between structural order and cohesion. Polarized optical microscopy (POM) and in situ small-angle X-ray scattering (SAXS) attribute this reduced alignment to enhanced rotary diffusion, driven by carboxylate groups of the Helux. With Helux, multivalent links across the nanofibers give a denser and tougher network with fewer voids. This behavior resembles lignin and hemicellulose interactions in wood, where flexibility and cohesion govern the performance.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c00128","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The complex architecture of wood motivates studies of bioinspired materials that combine strength, toughness, and mechanical integrity. We explore the interplay between nanofiber alignment and molecular interactions in composite filaments formed from cellulose nanofibers (CNFs) and a dendritic polyampholyte, Helux. Helux enhances strength by 60% and increases toughness 5-fold through ionic bonding and thermal covalent cross-linking. However, wide-angle X-ray scattering (WAXS) reveals reduced nanofiber alignment in Helux-containing samples, resulting in a 25% decrease in stiffness─highlighting a trade-off between structural order and cohesion. Polarized optical microscopy (POM) and in situ small-angle X-ray scattering (SAXS) attribute this reduced alignment to enhanced rotary diffusion, driven by carboxylate groups of the Helux. With Helux, multivalent links across the nanofibers give a denser and tougher network with fewer voids. This behavior resembles lignin and hemicellulose interactions in wood, where flexibility and cohesion govern the performance.

调谐对准,强度和韧性在功能性纤维素:Helux细丝:一个分子的权衡。
木材的复杂结构激发了生物灵感材料的研究,这些材料结合了强度、韧性和机械完整性。我们探索了由纤维素纳米纤维(CNFs)和树突状多两性聚合物Helux形成的复合细丝中纳米纤维排列和分子相互作用之间的相互作用。通过离子键和热共价交联,Helux的强度提高60%,韧性提高5倍。然而,广角x射线散射(WAXS)显示,在含有helux的样品中,纳米纤维的排列减少,导致刚度降低25%──突出了结构秩序和凝聚力之间的权衡。偏振光学显微镜(POM)和原位小角度x射线散射(SAXS)将这种减少的对准归因于Helux羧酸基驱动的旋转扩散增强。在Helux中,纳米纤维之间的多价连接提供了更密集、更坚固的网络,空隙更少。这种行为类似于木材中木质素和半纤维素的相互作用,其中柔韧性和凝聚力支配着性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信