Drug-Inspired Design of Supramolecular Polymers for Enhanced Drug Loading and Sustained Therapeutic Release.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-07-15 Epub Date: 2025-06-30 DOI:10.1021/acsnano.5c02462
Boran Sun, Mi-Kyung Shin, Meng Qin, Caleb F Anderson, Tian Xu, Jiarui Yang, Claire Sklar, Vsevolod Y Polotsky, Honggang Cui
{"title":"Drug-Inspired Design of Supramolecular Polymers for Enhanced Drug Loading and Sustained Therapeutic Release.","authors":"Boran Sun, Mi-Kyung Shin, Meng Qin, Caleb F Anderson, Tian Xu, Jiarui Yang, Claire Sklar, Vsevolod Y Polotsky, Honggang Cui","doi":"10.1021/acsnano.5c02462","DOIUrl":null,"url":null,"abstract":"<p><p>Supramolecular polymeric hydrogels have emerged as a dynamic, versatile platform for localized therapeutic delivery, leveraging reversible and tunable noncovalent interactions. Despite their potential, designing supramolecular polymers that combine high drug loading with sustained, controlled release remains a considerable challenge. Here, we introduce a series of drug-inspired, peptide-based monomers engineered as supramolecular hydrogelators to facilitate high-affinity coassembly with therapeutic agents. By strategically utilizing electrostatic complexation and π-π stacking interactions, these hydrogelators self-assemble into robust supramolecular polymer networks with well-defined nanostructures, achieving nearly 100% fingolimod loading efficiency and extremely high loading capacity (up to approximately 32% by mass). Our results demonstrate that these tailored supramolecular interactions not only enhance the fingolimod drug loading efficiency and capacity, but also modulate the self-assembly and dissociation process, enabling prolonged and predictable drug release both <i>in vitro</i> and <i>in vivo</i>. We believe this work advances the field of supramolecular polymers by integrating drug-inspired molecular design principles and contributes to the development of advanced drug delivery systems with broader biomedical applications.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":"24817-24830"},"PeriodicalIF":15.8000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c02462","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Supramolecular polymeric hydrogels have emerged as a dynamic, versatile platform for localized therapeutic delivery, leveraging reversible and tunable noncovalent interactions. Despite their potential, designing supramolecular polymers that combine high drug loading with sustained, controlled release remains a considerable challenge. Here, we introduce a series of drug-inspired, peptide-based monomers engineered as supramolecular hydrogelators to facilitate high-affinity coassembly with therapeutic agents. By strategically utilizing electrostatic complexation and π-π stacking interactions, these hydrogelators self-assemble into robust supramolecular polymer networks with well-defined nanostructures, achieving nearly 100% fingolimod loading efficiency and extremely high loading capacity (up to approximately 32% by mass). Our results demonstrate that these tailored supramolecular interactions not only enhance the fingolimod drug loading efficiency and capacity, but also modulate the self-assembly and dissociation process, enabling prolonged and predictable drug release both in vitro and in vivo. We believe this work advances the field of supramolecular polymers by integrating drug-inspired molecular design principles and contributes to the development of advanced drug delivery systems with broader biomedical applications.

以药物为灵感的超分子聚合物设计增强药物负载和持续治疗释放。
超分子聚合物水凝胶已经成为一种动态的、通用的局部治疗递送平台,利用可逆和可调节的非共价相互作用。尽管具有潜力,但设计高载药量与持续控释相结合的超分子聚合物仍然是一个相当大的挑战。在这里,我们介绍了一系列受药物启发的、基于肽的单体,它们被设计成超分子凝胶剂,以促进与治疗剂的高亲和力共组装。通过战略性地利用静电络合和π-π堆叠相互作用,这些凝胶剂自组装成具有良好定义的纳米结构的鲁棒超分子聚合物网络,实现了近100%的fingolimod负载效率和极高的负载能力(高达约32%的质量)。我们的研究结果表明,这些定制的超分子相互作用不仅提高了芬戈莫德的药物装载效率和容量,而且调节了自组装和解离过程,使体外和体内的药物释放时间延长和可预测。我们相信这项工作通过整合药物启发的分子设计原理,推进了超分子聚合物领域的发展,并有助于开发具有更广泛生物医学应用的先进药物输送系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信