Sang-Woo Jeon, Changwoo Do, Se Youn Moon, Tae-Hwan Kim
{"title":"Two-Dimensional Binary Superlattice of BNNT-Surfactant Vesicle Complex Induced by Electrostatic Interaction.","authors":"Sang-Woo Jeon, Changwoo Do, Se Youn Moon, Tae-Hwan Kim","doi":"10.1021/acscentsci.5c00548","DOIUrl":null,"url":null,"abstract":"<p><p>For a wide range of practical applications of boron nitride nanotubes (BNNTs), it is essential to achieve their highly ordered self-assembled structures. This study reports on a two-dimensional (2D) binary superlattice of individually exfoliated BNNTs with a negative surface charge (p-BNNT25) and cationic surfactant vesicles (CTAT/SDBS vesicles, prepared by mixing cetyltrimethylammonium tosylate (CTAT) and sodium dodecylbenzenesulfonate (SDBS)) complexes through electrostatic interactions. Depending on the surface charge density of the CTAT/SDBS vesicles and the mass ratio between the CTAT/SDBS vesicle and p-BNNT25, the CTAT/SDBS-BNNT complexes formed highly ordered superstructures. These structures include an intercalated lamellar phase with a centered rectangular structure (ICLP), in which a 2D array of p-BNNT25 is inserted into the multilamellar structure, and an AB<sub>3</sub> structure, in which the BNNTs are surrounded by surfactant micelles in a triangular arrangement. To the best of our knowledge, this is the first demonstration of the fabrication of highly ordered superstructures of individually exfoliated and negatively charged BNNTs with positively charged surfactant vesicles through electrostatic interactions. This approach for the 2D binary superlattices of CTAT/SDBS-BNNT complexes induced by electrostatic interactions is expected to be beneficial for a wide range of one-dimensional (1D) nanoparticle applications.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 6","pages":"950-959"},"PeriodicalIF":12.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203259/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscentsci.5c00548","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/25 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
For a wide range of practical applications of boron nitride nanotubes (BNNTs), it is essential to achieve their highly ordered self-assembled structures. This study reports on a two-dimensional (2D) binary superlattice of individually exfoliated BNNTs with a negative surface charge (p-BNNT25) and cationic surfactant vesicles (CTAT/SDBS vesicles, prepared by mixing cetyltrimethylammonium tosylate (CTAT) and sodium dodecylbenzenesulfonate (SDBS)) complexes through electrostatic interactions. Depending on the surface charge density of the CTAT/SDBS vesicles and the mass ratio between the CTAT/SDBS vesicle and p-BNNT25, the CTAT/SDBS-BNNT complexes formed highly ordered superstructures. These structures include an intercalated lamellar phase with a centered rectangular structure (ICLP), in which a 2D array of p-BNNT25 is inserted into the multilamellar structure, and an AB3 structure, in which the BNNTs are surrounded by surfactant micelles in a triangular arrangement. To the best of our knowledge, this is the first demonstration of the fabrication of highly ordered superstructures of individually exfoliated and negatively charged BNNTs with positively charged surfactant vesicles through electrostatic interactions. This approach for the 2D binary superlattices of CTAT/SDBS-BNNT complexes induced by electrostatic interactions is expected to be beneficial for a wide range of one-dimensional (1D) nanoparticle applications.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.