Keldy S Mason, Ji-Won Kim, Elizabeth A Recker, Jenna M Nymick, Mingyu Shi, Franz A Stolpen, Jaechul Ju, Zachariah A Page
{"title":"Multicolor Digital Light Processing 3D Printing Enables Dissolvable Supports for Freestanding and Non-Assembly Structures.","authors":"Keldy S Mason, Ji-Won Kim, Elizabeth A Recker, Jenna M Nymick, Mingyu Shi, Franz A Stolpen, Jaechul Ju, Zachariah A Page","doi":"10.1021/acscentsci.5c00289","DOIUrl":null,"url":null,"abstract":"<p><p>The limited diversity in photocurable resin chemistries has precluded access to certain geometries using digital light processing (DLP) 3D printing, a rapid, precise, economical, and low-waste manufacturing technology. Specifically, freestanding structures with floating overhangs (e.g., hooks) and mobile nonassembly structures that cannot be physically separated (e.g., joints) represent two such geometries that are difficult or impossible to access with contemporary DLP 3D printing. Herein, we disclose novel resins that selectively react with different colors of light to form soluble thermoplastics and insoluble thermosets. Systematic characterization of the acrylate- and epoxy-based resins and corresponding polymers from simultaneous UV and visible (violet or blue) light exposure revealed a rapid multimaterial 3D printing process (∼0.75 mm/min) capable of providing supports that dissolve in ethyl acetate, a \"green\" solvent, within 10 min at room temperature. Relative to manual support removal, the present process provides comparable or improved surface finishes and higher throughput. Finally, several proof-of-concept structures requiring dissolvable supports were 3D printed, including hooks, chains, and joints, which were scanned using computed tomography to showcase the process's geometric versatility and high fidelity. This work provides fundamental design principles for multimaterial resin chemistry and lays a foundation for automating next generation additive manufacturing.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 6","pages":"975-982"},"PeriodicalIF":12.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203260/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscentsci.5c00289","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/25 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The limited diversity in photocurable resin chemistries has precluded access to certain geometries using digital light processing (DLP) 3D printing, a rapid, precise, economical, and low-waste manufacturing technology. Specifically, freestanding structures with floating overhangs (e.g., hooks) and mobile nonassembly structures that cannot be physically separated (e.g., joints) represent two such geometries that are difficult or impossible to access with contemporary DLP 3D printing. Herein, we disclose novel resins that selectively react with different colors of light to form soluble thermoplastics and insoluble thermosets. Systematic characterization of the acrylate- and epoxy-based resins and corresponding polymers from simultaneous UV and visible (violet or blue) light exposure revealed a rapid multimaterial 3D printing process (∼0.75 mm/min) capable of providing supports that dissolve in ethyl acetate, a "green" solvent, within 10 min at room temperature. Relative to manual support removal, the present process provides comparable or improved surface finishes and higher throughput. Finally, several proof-of-concept structures requiring dissolvable supports were 3D printed, including hooks, chains, and joints, which were scanned using computed tomography to showcase the process's geometric versatility and high fidelity. This work provides fundamental design principles for multimaterial resin chemistry and lays a foundation for automating next generation additive manufacturing.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.