Multicatalysis-Enabled Multicomponent Reactions Generate a PTP1B Inhibitor.

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Central Science Pub Date : 2025-05-19 eCollection Date: 2025-06-25 DOI:10.1021/acscentsci.5c00041
Taoda Shi, Yukai Li, Jiying Yang, Weining Weng, Mengchu Zhang, Jirong Shu, Yu Qian, Tianyuan Zhang, Wenhao Hu
{"title":"Multicatalysis-Enabled Multicomponent Reactions Generate a PTP1B Inhibitor.","authors":"Taoda Shi, Yukai Li, Jiying Yang, Weining Weng, Mengchu Zhang, Jirong Shu, Yu Qian, Tianyuan Zhang, Wenhao Hu","doi":"10.1021/acscentsci.5c00041","DOIUrl":null,"url":null,"abstract":"<p><p>Multicomponent reactions are powerful tools for expanding the chemical space in drug discovery, yet achieving selectivity remains a formidable challenge. Here, we introduce a multicatalytic strategy to enable a multicomponent reaction, utilizing a cooperative system of rhodium, copper, Brønsted acid, and magnesium catalysts. This approach achieves excellent chemo-, diastereo-, and enantioselectivity (up to 99% yield, >20:1 dr, and 99% ee). Mechanistic studies, combining experimental and computational analyses, reveal a cascade sequence involving cyclopropenation, desilylation, cyclization, isomerization, aldol addition, and hydrolysis. This highly selective method exhibits broad substrate generality, producing 50 diverse CHBOs. Virtual screening and rapid biological evaluation led to the discovery of (<i>S</i>, <i>S</i>)-<b>3ak</b>, a potent PTP1B inhibitor with a submicromolar IC<sub>50</sub> value. Notably, (<i>S</i>, <i>S</i>)-<b>3ak</b> demonstrated 3-fold higher potency than its enantiomer, underscoring the critical role of chirality. Molecular docking studies elucidated the enantioselective binding mechanism, revealing key interactions responsible for activity differences. In summary, this MMCR strategy enables efficient access to enantiopure bioactive molecules and facilitates drug discovery, exemplified by a novel chiral PTP1B inhibitor.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 6","pages":"938-949"},"PeriodicalIF":12.7000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203432/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscentsci.5c00041","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/25 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multicomponent reactions are powerful tools for expanding the chemical space in drug discovery, yet achieving selectivity remains a formidable challenge. Here, we introduce a multicatalytic strategy to enable a multicomponent reaction, utilizing a cooperative system of rhodium, copper, Brønsted acid, and magnesium catalysts. This approach achieves excellent chemo-, diastereo-, and enantioselectivity (up to 99% yield, >20:1 dr, and 99% ee). Mechanistic studies, combining experimental and computational analyses, reveal a cascade sequence involving cyclopropenation, desilylation, cyclization, isomerization, aldol addition, and hydrolysis. This highly selective method exhibits broad substrate generality, producing 50 diverse CHBOs. Virtual screening and rapid biological evaluation led to the discovery of (S, S)-3ak, a potent PTP1B inhibitor with a submicromolar IC50 value. Notably, (S, S)-3ak demonstrated 3-fold higher potency than its enantiomer, underscoring the critical role of chirality. Molecular docking studies elucidated the enantioselective binding mechanism, revealing key interactions responsible for activity differences. In summary, this MMCR strategy enables efficient access to enantiopure bioactive molecules and facilitates drug discovery, exemplified by a novel chiral PTP1B inhibitor.

多催化多组分反应生成PTP1B抑制剂。
多组分反应是扩大药物发现化学空间的有力工具,但实现选择性仍然是一个艰巨的挑战。在这里,我们介绍了一种多催化剂策略,利用铑、铜、Brønsted酸和镁催化剂的协同体系来实现多组分反应。该方法具有优异的化学、非映体和对映体选择性(高达99%的产率,>20:1 dr和99% ee)。机制研究,结合实验和计算分析,揭示了一个级联序列,包括环丙烯化,脱硅,环化,异构化,醛醇加成和水解。这种高选择性的方法具有广泛的底物普遍性,可生产50种不同的chbo。虚拟筛选和快速生物学评估导致(S, S)-3ak的发现,这是一种有效的PTP1B抑制剂,具有亚微摩尔IC50值。值得注意的是,(S, S)-3ak的效价比其对映体高3倍,这表明手性的作用至关重要。分子对接研究阐明了对映选择性结合机制,揭示了导致活性差异的关键相互作用。总之,这种MMCR策略能够有效地获得对映纯生物活性分子,并促进药物发现,例如一种新的手性PTP1B抑制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信