Bacterial Cellulose-Based Laser-Scribed Graphene Electrode for Hydrogen Peroxide Detection in Cancer Cells.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Lucas F de Lima, André L Ferreira, Letícia Ester Dos Santos, Keyla Lívian P Coelho, Keyla Teixeira Santos, Ariane Schmidt, Marcelo Bispo de Jesus, Thiago R L C Paixão, William R de Araujo
{"title":"Bacterial Cellulose-Based Laser-Scribed Graphene Electrode for Hydrogen Peroxide Detection in Cancer Cells.","authors":"Lucas F de Lima, André L Ferreira, Letícia Ester Dos Santos, Keyla Lívian P Coelho, Keyla Teixeira Santos, Ariane Schmidt, Marcelo Bispo de Jesus, Thiago R L C Paixão, William R de Araujo","doi":"10.1021/acsabm.5c00825","DOIUrl":null,"url":null,"abstract":"<p><p>The development of sustainable and high-performance electrochemical sensors is crucial for advancing biomedical applications. In this work, we introduce a hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) sensor based on bacterial cellulose-derived laser-scribed graphene (BC-LSG), modified with MXene and platinum nanoparticles (PtNPs). Bacterial cellulose (BC), a biodegradable and renewable material, was cultivated and transformed into a highly conductive carbon network using CO<sub>2</sub> laser irradiation, producing a flexible, portable, and miniaturized electrochemical platform. The incorporation of MXene and PtNPs significantly enhanced the electrocatalytic response toward H<sub>2</sub>O<sub>2</sub> oxidation, achieving a wide linear concentration range (15-95 μmol L<sup>-1</sup>) and a low detection limit (0.35 μmol L<sup>-1</sup>). Compared to traditional enzymatic sensors, our nanostructured BC-LSG device offers superior stability, reproducibility, and eco-friendliness, aligning with green analytical chemistry principles. The sensor was successfully applied for H<sub>2</sub>O<sub>2</sub> detection in mammalian cells, demonstrating its potential for real-time monitoring of oxidative stress, a key biomarker in cancer progression and therapeutic responses. This work underscores the synergy between biopolymeric materials, nanotechnology, and laser processing, opening new avenues for scalable, disposable, and sustainable electrochemical devices.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The development of sustainable and high-performance electrochemical sensors is crucial for advancing biomedical applications. In this work, we introduce a hydrogen peroxide (H2O2) sensor based on bacterial cellulose-derived laser-scribed graphene (BC-LSG), modified with MXene and platinum nanoparticles (PtNPs). Bacterial cellulose (BC), a biodegradable and renewable material, was cultivated and transformed into a highly conductive carbon network using CO2 laser irradiation, producing a flexible, portable, and miniaturized electrochemical platform. The incorporation of MXene and PtNPs significantly enhanced the electrocatalytic response toward H2O2 oxidation, achieving a wide linear concentration range (15-95 μmol L-1) and a low detection limit (0.35 μmol L-1). Compared to traditional enzymatic sensors, our nanostructured BC-LSG device offers superior stability, reproducibility, and eco-friendliness, aligning with green analytical chemistry principles. The sensor was successfully applied for H2O2 detection in mammalian cells, demonstrating its potential for real-time monitoring of oxidative stress, a key biomarker in cancer progression and therapeutic responses. This work underscores the synergy between biopolymeric materials, nanotechnology, and laser processing, opening new avenues for scalable, disposable, and sustainable electrochemical devices.

细菌纤维素基激光刻写石墨烯电极用于肿瘤细胞过氧化氢检测。
开发可持续和高性能的电化学传感器对于推进生物医学应用至关重要。在这项工作中,我们介绍了一种基于细菌纤维素衍生的激光刻写石墨烯(BC-LSG)的过氧化氢(H2O2)传感器,该传感器用MXene和铂纳米颗粒(PtNPs)修饰。细菌纤维素(BC)是一种可生物降解和可再生的材料,利用CO2激光照射将细菌纤维素转化为高导电性的碳网络,生产出灵活、便携、小型化的电化学平台。MXene和PtNPs的掺入显著增强了对H2O2氧化的电催化反应,具有较宽的线性浓度范围(15 ~ 95 μmol L-1)和较低的检出限(0.35 μmol L-1)。与传统的酶传感器相比,我们的纳米结构BC-LSG装置具有优越的稳定性、可重复性和生态友好性,符合绿色分析化学原则。该传感器已成功应用于哺乳动物细胞中的H2O2检测,证明了其实时监测氧化应激的潜力,氧化应激是癌症进展和治疗反应的关键生物标志物。这项工作强调了生物聚合物材料、纳米技术和激光加工之间的协同作用,为可扩展、一次性和可持续的电化学设备开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信