Seiko Jose, Sabu Thomas, Sradha Mariya Thomas, Jesiya Susan George, Anjumol Kidangayil Sali
{"title":"The effect of nano kaolinite as a filler in the coarse wool – vinyl ester composite","authors":"Seiko Jose, Sabu Thomas, Sradha Mariya Thomas, Jesiya Susan George, Anjumol Kidangayil Sali","doi":"10.1002/vnl.22217","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>In comparison with plant fibers, wool is under-exploited in composite applications. Coarse wool with >50 micron diameter is generally not preferred for apparel, blankets, or carpets and remains underutilized. In the reported work, non-textile grade coarse wool fabric was coated with vinyl ester resin (VER), and subsequently, composites were developed. To increase the mechanical properties of the composite, nano kaolinite was introduced as a filler. The effect of various concentrations (0.25, 0.50, 1.0 %) of nano kaolinite (NK) on the physico-mechanical and aging characteristics of the developed composites was investigated. The results inferred that a minor addition of nano kaolinite (0.5%) in the wool + VER composite resulted in an increase of 16% tensile strength, 31% modulus, and 19 % impact strength, respectively. The findings of the dynamic mechanical analysis showed that, with 0.5% nano kaolinite addition, the composite's storage and loss modulus were exhibited as 1.9 and 0.22 GPa, respectively, which are higher than those of the control wool + VER composites (1.1 and 0.15 GPa storage and loss modulus respectively). The SEM images depicted a moderate adhesion between the wool fiber and the vinyl ester resin. The presence of nano kaolinite in the composite results in a marginal reduction in the water contact angle and an increase in the water diffusion properties. The thermal and UV aging properties of the wool-vinyl ester composites were improved with the addition of nano kaolinite; however, the developed composites showed poor soil degradation.</p>\n </section>\n \n <section>\n \n <h3> Highlights</h3>\n \n <div>\n <ul>\n \n <li>Composites were developed with non-textile-grade coarse wool fabric and vinyl ester resin.</li>\n \n <li>To increase the mechanical properties of the composite, nano kaolinite was utilized.</li>\n \n <li>The effect of nano kaolinite on the properties of the composite was analyzed.</li>\n \n <li>Nano kaolinite significantly improved the mechanical properties of the composites.</li>\n \n <li>Most importantly, the aging properties of the composites were substantially improved.</li>\n </ul>\n </div>\n </section>\n </div>","PeriodicalId":17662,"journal":{"name":"Journal of Vinyl & Additive Technology","volume":"31 4","pages":"904-916"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vinyl & Additive Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/vnl.22217","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In comparison with plant fibers, wool is under-exploited in composite applications. Coarse wool with >50 micron diameter is generally not preferred for apparel, blankets, or carpets and remains underutilized. In the reported work, non-textile grade coarse wool fabric was coated with vinyl ester resin (VER), and subsequently, composites were developed. To increase the mechanical properties of the composite, nano kaolinite was introduced as a filler. The effect of various concentrations (0.25, 0.50, 1.0 %) of nano kaolinite (NK) on the physico-mechanical and aging characteristics of the developed composites was investigated. The results inferred that a minor addition of nano kaolinite (0.5%) in the wool + VER composite resulted in an increase of 16% tensile strength, 31% modulus, and 19 % impact strength, respectively. The findings of the dynamic mechanical analysis showed that, with 0.5% nano kaolinite addition, the composite's storage and loss modulus were exhibited as 1.9 and 0.22 GPa, respectively, which are higher than those of the control wool + VER composites (1.1 and 0.15 GPa storage and loss modulus respectively). The SEM images depicted a moderate adhesion between the wool fiber and the vinyl ester resin. The presence of nano kaolinite in the composite results in a marginal reduction in the water contact angle and an increase in the water diffusion properties. The thermal and UV aging properties of the wool-vinyl ester composites were improved with the addition of nano kaolinite; however, the developed composites showed poor soil degradation.
Highlights
Composites were developed with non-textile-grade coarse wool fabric and vinyl ester resin.
To increase the mechanical properties of the composite, nano kaolinite was utilized.
The effect of nano kaolinite on the properties of the composite was analyzed.
Nano kaolinite significantly improved the mechanical properties of the composites.
Most importantly, the aging properties of the composites were substantially improved.
期刊介绍:
Journal of Vinyl and Additive Technology is a peer-reviewed technical publication for new work in the fields of polymer modifiers and additives, vinyl polymers and selected review papers. Over half of all papers in JVAT are based on technology of additives and modifiers for all classes of polymers: thermoset polymers and both condensation and addition thermoplastics. Papers on vinyl technology include PVC additives.