On Time-Inconsistency in Mean-Field Games

IF 1.6 3区 经济学 Q3 BUSINESS, FINANCE
Erhan Bayraktar, Zhenhua Wang
{"title":"On Time-Inconsistency in Mean-Field Games","authors":"Erhan Bayraktar,&nbsp;Zhenhua Wang","doi":"10.1111/mafi.12456","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We investigate an infinite-horizon time-inconsistent mean-field game (MFG) in a discrete time setting. We first present a classic equilibrium for the MFG and its associated existence result. This classic equilibrium aligns with the conventional equilibrium concept studied in MFG literature when the context is time-consistent. Then we demonstrate that while this equilibrium produces an approximate optimal strategy when applied to the related <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-agent games, it does so solely in a precommitment sense. Therefore, it cannot function as a genuinely approximate equilibrium strategy from the perspective of a sophisticated agent within the <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-agent game. To address this limitation, we propose a new <i>consistent</i> equilibrium concept in both the MFG and the <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-agent game. We show that a consistent equilibrium in the MFG can indeed function as an approximate consistent equilibrium in the <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-agent game. Additionally, we analyze the convergence of consistent equilibria for <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-agent games toward a consistent MFG equilibrium as <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> tends to infinity.</p></div>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":"35 3","pages":"613-635"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12456","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate an infinite-horizon time-inconsistent mean-field game (MFG) in a discrete time setting. We first present a classic equilibrium for the MFG and its associated existence result. This classic equilibrium aligns with the conventional equilibrium concept studied in MFG literature when the context is time-consistent. Then we demonstrate that while this equilibrium produces an approximate optimal strategy when applied to the related N $N$ -agent games, it does so solely in a precommitment sense. Therefore, it cannot function as a genuinely approximate equilibrium strategy from the perspective of a sophisticated agent within the N $N$ -agent game. To address this limitation, we propose a new consistent equilibrium concept in both the MFG and the N $N$ -agent game. We show that a consistent equilibrium in the MFG can indeed function as an approximate consistent equilibrium in the N $N$ -agent game. Additionally, we analyze the convergence of consistent equilibria for N $N$ -agent games toward a consistent MFG equilibrium as N $N$ tends to infinity.

论平均场博弈中的时间不一致性
研究离散时间条件下的无限视界时间不一致平均场对策。我们首先给出了MFG的一个经典均衡及其存在性结果。当上下文是时间一致时,这种经典均衡与MFG文献中研究的传统均衡概念一致。然后我们证明,当应用于相关的N$ N$智能体博弈时,这种均衡产生了一个近似的最优策略,它仅在预承诺意义上这样做。因此,从N$ N$ -agent博弈中的复杂agent的角度来看,它不能作为真正的近似均衡策略。为了解决这一限制,我们在MFG和N$ N$ -agent博弈中提出了一个新的一致均衡概念。我们证明了MFG中的一致均衡确实可以作为N$ N$ -agent博弈中的近似一致均衡。此外,我们分析了当N$ N$趋于无穷时,N$ N$ -agent博弈的一致均衡收敛到一致MFG均衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Finance
Mathematical Finance 数学-数学跨学科应用
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems. The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信