Polar Coordinates for the 3/2 Stochastic Volatility Model

IF 1.6 3区 经济学 Q3 BUSINESS, FINANCE
Paul Nekoranik
{"title":"Polar Coordinates for the 3/2 Stochastic Volatility Model","authors":"Paul Nekoranik","doi":"10.1111/mafi.12455","DOIUrl":null,"url":null,"abstract":"<p>The 3/2 stochastic volatility model is a continuous positive process <i>s</i> with a correlated infinitesimal variance process <span></span><math>\n <semantics>\n <mi>ν</mi>\n <annotation>$\\nu $</annotation>\n </semantics></math>. The exact definition is provided in the Introduction immediately below. By inspecting the geometry associated with this model, we discover an explicit smooth map <span></span><math>\n <semantics>\n <mi>ψ</mi>\n <annotation>$ \\psi $</annotation>\n </semantics></math> from <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mo>+</mo>\n </msup>\n <mo>)</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <annotation>$({\\mathbb{R}}^+)^2 $</annotation>\n </semantics></math> to the punctured plane <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <mo>−</mo>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\mathbb{R}}^2-(0,0)$</annotation>\n </semantics></math> for which the process <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>u</mi>\n <mo>,</mo>\n <mi>v</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mi>ψ</mi>\n <mo>(</mo>\n <mi>ν</mi>\n <mo>,</mo>\n <mi>s</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(u,v)=\\psi(\\nu,s)$</annotation>\n </semantics></math> satisfies an SDE of a simpler form, with independent Brownian motions and the identity matrix as diffusion coefficient. Moreover, <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ν</mi>\n <mi>t</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>s</mi>\n <mi>t</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\nu_t,s_t)$</annotation>\n </semantics></math> is recoverable from the path <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>(</mo>\n <mi>u</mi>\n <mo>,</mo>\n <mi>v</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>[</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>t</mi>\n <mo>]</mo>\n </mrow>\n </msub>\n <annotation>$(u,v)_{[0,t]}$</annotation>\n </semantics></math> by a map that depends only on the distance of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>u</mi>\n <mi>t</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>v</mi>\n <mi>t</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(u_t,v_t)$</annotation>\n </semantics></math> from the origin and the winding angle around the origin of <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>(</mo>\n <mi>u</mi>\n <mo>,</mo>\n <mi>v</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>[</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>t</mi>\n <mo>]</mo>\n </mrow>\n </msub>\n <annotation>$(u,v)_{[0,t]}$</annotation>\n </semantics></math>. We call the process <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>u</mi>\n <mo>,</mo>\n <mi>v</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(u,v)$</annotation>\n </semantics></math> together with its map to <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>ν</mi>\n <mo>,</mo>\n <mi>s</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\nu,s)$</annotation>\n </semantics></math> the <i>polar coordinate system</i> for the 3/2 model. We demonstrate the utility of the polar coordinate system by using it to write this model's asymptotic smile for all strikes at <i>t = 0</i>. We also state a general theorem on obstructions to the existence of a map that trivializes the infinitesimal covariance matrix of a stochastic volatility model.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":"35 3","pages":"708-723"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12455","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12455","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

The 3/2 stochastic volatility model is a continuous positive process s with a correlated infinitesimal variance process ν $\nu $ . The exact definition is provided in the Introduction immediately below. By inspecting the geometry associated with this model, we discover an explicit smooth map ψ $ \psi $ from ( R + ) 2 $({\mathbb{R}}^+)^2 $ to the punctured plane R 2 ( 0 , 0 ) ${\mathbb{R}}^2-(0,0)$ for which the process ( u , v ) = ψ ( ν , s ) $(u,v)=\psi(\nu,s)$ satisfies an SDE of a simpler form, with independent Brownian motions and the identity matrix as diffusion coefficient. Moreover, ( ν t , s t ) $(\nu_t,s_t)$ is recoverable from the path ( u , v ) [ 0 , t ] $(u,v)_{[0,t]}$ by a map that depends only on the distance of ( u t , v t ) $(u_t,v_t)$ from the origin and the winding angle around the origin of ( u , v ) [ 0 , t ] $(u,v)_{[0,t]}$ . We call the process ( u , v ) $(u,v)$ together with its map to ( ν , s ) $(\nu,s)$ the polar coordinate system for the 3/2 model. We demonstrate the utility of the polar coordinate system by using it to write this model's asymptotic smile for all strikes at t = 0. We also state a general theorem on obstructions to the existence of a map that trivializes the infinitesimal covariance matrix of a stochastic volatility model.

Abstract Image

3/2随机波动模型的极坐标
3/2随机波动模型是一个连续的正过程s,具有一个相关的无穷小方差过程ν $\nu $。确切的定义在下面的介绍中提供。通过检查与这个模型相关的几何结构,我们发现了一个从(R +) 2 $({\mathbb{R}}^+)^2 $到穿孔平面的显式光滑映射ψ $ \psi $r2−(0,0)${\mathbb{R}}^2-(0,0)$,其中过程(u,v) = ψ (ν, s) $(u,v)=\psi(\nu,s)$满足一个更简单形式的SDE,具有独立的布朗运动和单位矩阵作为扩散系数。此外,(ν t,S t) $(\nu_t,s_t)$可从路径(u,V) [0,T] $(u,v)_{[0,t]}$通过只依赖于(u) T的距离的地图,V t) $(u_t,v_t)$和绕原点的绕线角(u),V) [0, t] $(u,v)_{[0,t]}$。我们称这个过程为(u, v) $(u,v)$以及它到(ν)的映射,S) $(\nu,s)$ 3/2模型的极坐标系统。我们通过使用极坐标系统写出该模型在t = 0处所有打击的渐近微笑来证明它的实用性。我们还给出了一个关于最小化随机波动模型的无限小协方差矩阵的映射存在性障碍的一般定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Finance
Mathematical Finance 数学-数学跨学科应用
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems. The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信