Kexin Liu, Dongyang Li, Yunpeng Liu, Gang Liu, Zhenbin Du, Shuqi Zhang, Ke Wang, Xiaolin Zhao
{"title":"Research on Dynamic Reduced-Order Model for Fast Calculation of Transient Temperature Field in Transformer Windings","authors":"Kexin Liu, Dongyang Li, Yunpeng Liu, Gang Liu, Zhenbin Du, Shuqi Zhang, Ke Wang, Xiaolin Zhao","doi":"10.1049/elp2.70056","DOIUrl":null,"url":null,"abstract":"<p>To mitigate the potential loss of computational accuracy in the Reduced-Order Model (ROM) due to modal changes during transformer operation, this paper proposes a dynamic updating method for the ROM. This method enables the model to dynamically adjust and adapt to system changes. When transformer operating conditions change, new snapshot data is employed to update the original snapshot matrix, while the POD modes are updated by integrating matrix low-rank decomposition with the Singular Value Decomposition (SVD) results of the original snapshot matrix—thus avoiding the need of SVD for the new snapshot matrix. By incorporating discrete measurement data from the winding temperature, the modal coefficients are solved in real-time based on Gappy POD, facilitating the construction of the dynamic ROM. The proposed method was validated using a simulation model of 110 kV transformer windings. The results demonstrates that the maximum error in updating the POD modes is only 3.60 × 10<sup>−6</sup>, with a single update requiring approximately 0.12s. Furthermore, the dynamic ROM reduces the maximum error by 1.78 K. Without considering the snapshot matrix formation time, the average computation time for each time step is about 0.02s. This study presents a novel solution for the dynamic application of the ROM in the transformer temperature field.</p>","PeriodicalId":13352,"journal":{"name":"Iet Electric Power Applications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70056","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Electric Power Applications","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.70056","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
To mitigate the potential loss of computational accuracy in the Reduced-Order Model (ROM) due to modal changes during transformer operation, this paper proposes a dynamic updating method for the ROM. This method enables the model to dynamically adjust and adapt to system changes. When transformer operating conditions change, new snapshot data is employed to update the original snapshot matrix, while the POD modes are updated by integrating matrix low-rank decomposition with the Singular Value Decomposition (SVD) results of the original snapshot matrix—thus avoiding the need of SVD for the new snapshot matrix. By incorporating discrete measurement data from the winding temperature, the modal coefficients are solved in real-time based on Gappy POD, facilitating the construction of the dynamic ROM. The proposed method was validated using a simulation model of 110 kV transformer windings. The results demonstrates that the maximum error in updating the POD modes is only 3.60 × 10−6, with a single update requiring approximately 0.12s. Furthermore, the dynamic ROM reduces the maximum error by 1.78 K. Without considering the snapshot matrix formation time, the average computation time for each time step is about 0.02s. This study presents a novel solution for the dynamic application of the ROM in the transformer temperature field.
期刊介绍:
IET Electric Power Applications publishes papers of a high technical standard with a suitable balance of practice and theory. The scope covers a wide range of applications and apparatus in the power field. In addition to papers focussing on the design and development of electrical equipment, papers relying on analysis are also sought, provided that the arguments are conveyed succinctly and the conclusions are clear.
The scope of the journal includes the following:
The design and analysis of motors and generators of all sizes
Rotating electrical machines
Linear machines
Actuators
Power transformers
Railway traction machines and drives
Variable speed drives
Machines and drives for electrically powered vehicles
Industrial and non-industrial applications and processes
Current Special Issue. Call for papers:
Progress in Electric Machines, Power Converters and their Control for Wave Energy Generation - https://digital-library.theiet.org/files/IET_EPA_CFP_PEMPCCWEG.pdf