SAFT: Learning Scale-Aware Inter-Series Correlations for Time Series Forecasting

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xin-Yi Li;Yu-Bin Yang
{"title":"SAFT: Learning Scale-Aware Inter-Series Correlations for Time Series Forecasting","authors":"Xin-Yi Li;Yu-Bin Yang","doi":"10.1109/LSP.2025.3578914","DOIUrl":null,"url":null,"abstract":"Multivariate time series forecasting faces the fundamental challenge of modeling complex temporal dependencies while capturing cross-variable relationships, especially in real-world applications where data exhibits intricate patterns across multiple scales. Existing models often overlook the necessity of explicitly incorporating scale awareness when modeling cross-variable correlations, leading to potential overfitting and instability. To address these issues, we propose Scale-Aware Forecasting Transformer (SAFT), which introduces a novel scale-aware multi-head attention mechanism to model cross-variable dependencies across different time scales. SAFT progressively integrates information from coarser to finer scales, enabling robust modeling of complex temporal dynamics. Extensive experiments demonstrate that SAFT achieves overall state-of-the-art performance in both long-term and short-term forecasting tasks.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"2519-2523"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11031133/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Multivariate time series forecasting faces the fundamental challenge of modeling complex temporal dependencies while capturing cross-variable relationships, especially in real-world applications where data exhibits intricate patterns across multiple scales. Existing models often overlook the necessity of explicitly incorporating scale awareness when modeling cross-variable correlations, leading to potential overfitting and instability. To address these issues, we propose Scale-Aware Forecasting Transformer (SAFT), which introduces a novel scale-aware multi-head attention mechanism to model cross-variable dependencies across different time scales. SAFT progressively integrates information from coarser to finer scales, enabling robust modeling of complex temporal dynamics. Extensive experiments demonstrate that SAFT achieves overall state-of-the-art performance in both long-term and short-term forecasting tasks.
学习尺度感知的序列间相关性用于时间序列预测
多变量时间序列预测面临着在捕获交叉变量关系的同时对复杂的时间依赖性进行建模的基本挑战,特别是在数据在多个尺度上显示复杂模式的实际应用中。现有模型在建模交叉变量相关性时往往忽略了明确纳入尺度意识的必要性,从而导致潜在的过拟合和不稳定。为了解决这些问题,我们提出了尺度感知预测变压器(SAFT),它引入了一种新颖的尺度感知多头注意机制来模拟不同时间尺度上的交叉变量依赖。SAFT逐步集成了从粗到细尺度的信息,实现了复杂时间动态的鲁棒建模。大量的实验表明,SAFT在长期和短期预测任务中都达到了最先进的总体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信