{"title":"Pre-harvest microbial Interventions: Impact on disease prevention, fermentation dynamics, and wine aroma in grape cultivation","authors":"Yijun Zhang, Xinglu Duan, Xiaohua Ma, Shengyun Lv, Yanlin Liu, Xixi Zhao","doi":"10.1016/j.crfs.2025.101132","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial communities play a critical role in determining both fruit health and fermentation outcomes along the grape-to-wine continuum, yet their diversity dynamics within holistic production systems remain poorly understood. In this study, we investigated the impact of pre-harvest interventions—specifically the application of <em>Saccharomyces cerevisiae</em> NX2320, <em>Trichoderma harzianum</em>, and fludioxonil—on microbial community trajectories and wine aroma profiles during spontaneous fermentation. We demonstrated that all treatments significantly suppressed grape pathogens compared to untreated controls, while simultaneously restructuring the microbial communities in grape juice. This restructuring influenced fermentation outcomes, leading to distinct volatile compound profiles in the final wines. Notably, the <em>S. cerevisiae</em>-treated group exhibited rapid dominance of <em>Saccharomyces</em> (initial abundance: 89.96 %), which accelerated ethanol production and elevated key esters such as isobutyl acetate and 1-butanol-3-methyl-acetate. These changes collectively enhanced fruity notes in the wines. Furthermore, fungal diversity inversely correlated with fermentation progression, reinforcing the role of <em>Saccharomyces</em> in simplifying the microbial ecosystem. Crucially, early microbial modulation (pre-fermentation) proved to be a pivotal factor in determining the sensory attributes of the final wines, with the timing and type of intervention significantly influencing the variability of volatile compounds. These findings establish a causal relationship between agricultural microbiome management and oenological quality, offering actionable strategies for optimizing wine microbiota engineering and achieving desired aromatic characteristics.</div></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"11 ","pages":"Article 101132"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665927125001637","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial communities play a critical role in determining both fruit health and fermentation outcomes along the grape-to-wine continuum, yet their diversity dynamics within holistic production systems remain poorly understood. In this study, we investigated the impact of pre-harvest interventions—specifically the application of Saccharomyces cerevisiae NX2320, Trichoderma harzianum, and fludioxonil—on microbial community trajectories and wine aroma profiles during spontaneous fermentation. We demonstrated that all treatments significantly suppressed grape pathogens compared to untreated controls, while simultaneously restructuring the microbial communities in grape juice. This restructuring influenced fermentation outcomes, leading to distinct volatile compound profiles in the final wines. Notably, the S. cerevisiae-treated group exhibited rapid dominance of Saccharomyces (initial abundance: 89.96 %), which accelerated ethanol production and elevated key esters such as isobutyl acetate and 1-butanol-3-methyl-acetate. These changes collectively enhanced fruity notes in the wines. Furthermore, fungal diversity inversely correlated with fermentation progression, reinforcing the role of Saccharomyces in simplifying the microbial ecosystem. Crucially, early microbial modulation (pre-fermentation) proved to be a pivotal factor in determining the sensory attributes of the final wines, with the timing and type of intervention significantly influencing the variability of volatile compounds. These findings establish a causal relationship between agricultural microbiome management and oenological quality, offering actionable strategies for optimizing wine microbiota engineering and achieving desired aromatic characteristics.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.