{"title":"Electronic phase transitions under pressure in thermodynamically stable phases of SrC2: A route toward tunable semiconductor-metal materials","authors":"Rachid Baghdad","doi":"10.1016/j.micrna.2025.208256","DOIUrl":null,"url":null,"abstract":"<div><div>We report a systematic first-principles investigation of the two most stable polymorphs of strontium dicarbide (<span><math><mrow><msub><mtext>SrC</mtext><mn>2</mn></msub></mrow></math></span>): the high-symmetry tetragonal <span><math><mrow><mi>I</mi><mn>4</mn><mo>/</mo><mi>m</mi><mi>m</mi><mi>m</mi></mrow></math></span> phase and the low-symmetry monoclinic <span><math><mrow><mi>C</mi><mn>2</mn><mo>/</mo><mi>c</mi></mrow></math></span> phase. Free-energy calculations indicate a crossover at <span><math><mrow><mo>∼</mo><mn>600</mn><mtext></mtext><mi>K</mi></mrow></math></span>: below this temperature, <span><math><mrow><mi>I</mi><mn>4</mn><mo>/</mo><mi>m</mi><mi>m</mi><mi>m</mi></mrow></math></span> is thermodynamically favored, but above it, vibrational entropy stabilizes the <span><math><mrow><mi>C</mi><mn>2</mn><mo>/</mo><mi>c</mi></mrow></math></span> phase. Electronic-structure and optical-absorption spectra predict indirect band gaps of <span><math><mrow><mn>2.91</mn><mtext></mtext><mi>e</mi><mi>V</mi></mrow></math></span> (<span><math><mrow><mi>I</mi><mn>4</mn><mo>/</mo><mi>m</mi><mi>m</mi><mi>m</mi></mrow></math></span>) and <span><math><mrow><mn>4.13</mn><mtext></mtext><mi>e</mi><mi>V</mi></mrow></math></span> (<span><math><mrow><mi>C</mi><mn>2</mn><mo>/</mo><mi>c</mi></mrow></math></span>). The tetragonal phase exhibits nearly isotropic optical response, while the monoclinic phase shows moderate in-plane anisotropy, suggesting potential for polarization-sensitive photonic and ultraviolet-plasmonic devices. Under hydrostatic pressures up to <span><math><mrow><mn>80</mn><mtext></mtext><mi>G</mi><mi>P</mi><mi>a</mi></mrow></math></span>, both polymorphs display tunable band-gap trends, highlighting opportunities for pressure-modulated optoelectronic applications. Taken together, our results reconcile earlier discrepancies, elucidate the interplay between symmetry, lattice dynamics, and electronic properties in <span><math><mrow><msub><mtext>SrC</mtext><mn>2</mn></msub></mrow></math></span>, and identify the monoclinic <span><math><mrow><mi>C</mi><mn>2</mn><mo>/</mo><mi>c</mi></mrow></math></span> polymorph as a promising platform for anisotropic photonics and UV-plasmonics.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"206 ","pages":"Article 208256"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325001852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
We report a systematic first-principles investigation of the two most stable polymorphs of strontium dicarbide (): the high-symmetry tetragonal phase and the low-symmetry monoclinic phase. Free-energy calculations indicate a crossover at : below this temperature, is thermodynamically favored, but above it, vibrational entropy stabilizes the phase. Electronic-structure and optical-absorption spectra predict indirect band gaps of () and (). The tetragonal phase exhibits nearly isotropic optical response, while the monoclinic phase shows moderate in-plane anisotropy, suggesting potential for polarization-sensitive photonic and ultraviolet-plasmonic devices. Under hydrostatic pressures up to , both polymorphs display tunable band-gap trends, highlighting opportunities for pressure-modulated optoelectronic applications. Taken together, our results reconcile earlier discrepancies, elucidate the interplay between symmetry, lattice dynamics, and electronic properties in , and identify the monoclinic polymorph as a promising platform for anisotropic photonics and UV-plasmonics.