Renyuan Zhang , Junhua Gou , Yabo Zhu , Bei Yang , Kai Cai
{"title":"Bounded-time nonblocking supervisory control of timed discrete-event systems","authors":"Renyuan Zhang , Junhua Gou , Yabo Zhu , Bei Yang , Kai Cai","doi":"10.1016/j.ejcon.2025.101266","DOIUrl":null,"url":null,"abstract":"<div><div>Recently an automaton property of quantitative nonblockingness was proposed in supervisory control of untimed discrete-event systems (DES), which <em>quantifies</em> the standard nonblocking property by capturing the practical requirement that all tasks be completed within a bounded number of steps. However, in practice tasks may be further required to be completed in specific time. To meet this new requirement, in this paper we introduce the concept of <em>bounded-time nonblockingness</em>, which extends the concept of quantitative nonblockingness from untimed DES to timed DES. This property requires that each task must be completed within a bounded time counted by the number of <span><math><mrow><mi>t</mi><mi>i</mi><mi>c</mi><mi>k</mi><mi>s</mi></mrow></math></span>, rather than bounded number of transition steps in quantitative nonblockingness. Accordingly, we formulate a new bounded-time nonblocking supervisory control problem (BTNSCP) of timed DES, and characterize its solvability in terms of a new concept of <em>bounded-time language completability</em>. Then we present an approach to compute the maximally permissive solution to the new BTNSCP.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"85 ","pages":"Article 101266"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358025000950","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently an automaton property of quantitative nonblockingness was proposed in supervisory control of untimed discrete-event systems (DES), which quantifies the standard nonblocking property by capturing the practical requirement that all tasks be completed within a bounded number of steps. However, in practice tasks may be further required to be completed in specific time. To meet this new requirement, in this paper we introduce the concept of bounded-time nonblockingness, which extends the concept of quantitative nonblockingness from untimed DES to timed DES. This property requires that each task must be completed within a bounded time counted by the number of , rather than bounded number of transition steps in quantitative nonblockingness. Accordingly, we formulate a new bounded-time nonblocking supervisory control problem (BTNSCP) of timed DES, and characterize its solvability in terms of a new concept of bounded-time language completability. Then we present an approach to compute the maximally permissive solution to the new BTNSCP.
期刊介绍:
The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field.
The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering.
The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications.
Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results.
The design and implementation of a successful control system requires the use of a range of techniques:
Modelling
Robustness Analysis
Identification
Optimization
Control Law Design
Numerical analysis
Fault Detection, and so on.