Traffic prediction in time series, spatialtemporal, and OD data: A systematic survey

IF 7.4 2区 工程技术 Q1 ENGINEERING, CIVIL
Kai Du , Xingping Guo , Letian Li , Jingni Song , Qingqing Shi , Mengyao Hu , Jianwu Fang
{"title":"Traffic prediction in time series, spatialtemporal, and OD data: A systematic survey","authors":"Kai Du ,&nbsp;Xingping Guo ,&nbsp;Letian Li ,&nbsp;Jingni Song ,&nbsp;Qingqing Shi ,&nbsp;Mengyao Hu ,&nbsp;Jianwu Fang","doi":"10.1016/j.jtte.2025.03.001","DOIUrl":null,"url":null,"abstract":"<div><div>The burgeoning field of intelligent transportation systems (ITS) has been pivotal in addressing contemporary traffic challenges, significantly benefiting from the evolution of computational capabilities and sensor technologies. This surge in technical advancement has paved the way for extensive reliance on deep-learning methodologies to exploit large-scale traffc data. Such efforts are directed toward decoding the intricate spatiotemporal dynamics inherent in traffc prediction. This study delves into the realm of traffc prediction, encompassing time series, spatiotemporal, and origin-destination (OD) predictions, to dissect the nuances among various predictive methodologies. Through a meticulous examination, this paper highlights the efficacy of spatiotemporal coupling techniques in enhancing prediction accuracy. Furthermore, it scrutinizes the existing challenges and delineates open and new questions within the traffc prediction domain, thereby charting out prospective avenues for future research endeavors.</div></div>","PeriodicalId":47239,"journal":{"name":"Journal of Traffic and Transportation Engineering-English Edition","volume":"12 3","pages":"Pages 666-700"},"PeriodicalIF":7.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Traffic and Transportation Engineering-English Edition","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095756425000777","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The burgeoning field of intelligent transportation systems (ITS) has been pivotal in addressing contemporary traffic challenges, significantly benefiting from the evolution of computational capabilities and sensor technologies. This surge in technical advancement has paved the way for extensive reliance on deep-learning methodologies to exploit large-scale traffc data. Such efforts are directed toward decoding the intricate spatiotemporal dynamics inherent in traffc prediction. This study delves into the realm of traffc prediction, encompassing time series, spatiotemporal, and origin-destination (OD) predictions, to dissect the nuances among various predictive methodologies. Through a meticulous examination, this paper highlights the efficacy of spatiotemporal coupling techniques in enhancing prediction accuracy. Furthermore, it scrutinizes the existing challenges and delineates open and new questions within the traffc prediction domain, thereby charting out prospective avenues for future research endeavors.
交通预测在时间序列,时空和OD数据:一个系统的调查
智能交通系统(ITS)这一新兴领域在解决当代交通挑战方面发挥了关键作用,它极大地受益于计算能力和传感器技术的发展。这种技术进步的激增为广泛依赖深度学习方法来利用大规模交通数据铺平了道路。这些努力的目的是解码交通预测中固有的复杂时空动态。本研究深入探讨交通预测领域,包括时间序列、时空和始发目的地(OD)预测,剖析各种预测方法之间的细微差别。通过细致的研究,本文强调了时空耦合技术在提高预测精度方面的有效性。此外,它仔细审查了现有的挑战,并描绘了交通预测领域内的开放和新的问题,从而为未来的研究工作绘制出了前瞻性的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.60
自引率
6.30%
发文量
402
审稿时长
15 weeks
期刊介绍: The Journal of Traffic and Transportation Engineering (English Edition) serves as a renowned academic platform facilitating the exchange and exploration of innovative ideas in the realm of transportation. Our journal aims to foster theoretical and experimental research in transportation and welcomes the submission of exceptional peer-reviewed papers on engineering, planning, management, and information technology. We are dedicated to expediting the peer review process and ensuring timely publication of top-notch research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信