Ran Chen , Xingjian Yi , Jing Zhao , Yueheng He , Bainian Chen , Fangjun Liu , Xueqi Yao , Xuhui Jiang , Zeke Lian , Haoran Li
{"title":"AI for Landscape Planning: Assessing Surrounding Contextual Impact on GAN-Generated Green Land Layouts","authors":"Ran Chen , Xingjian Yi , Jing Zhao , Yueheng He , Bainian Chen , Fangjun Liu , Xueqi Yao , Xuhui Jiang , Zeke Lian , Haoran Li","doi":"10.1016/j.cities.2025.106181","DOIUrl":null,"url":null,"abstract":"<div><div>The development of generative design driven by artificial intelligence algorithms is speedy. There are two research gaps in the current research: 1) Most studies only focus on the relationship between design elements and pay little attention to the external information of the site; 2) GAN and other traditional generative algorithms generate results with low resolution and insufficient details. To address these two problems, we integrate GAN, Stable diffusion multimodal large-scale image pre-training model to construct a full-process park generative design method: 1) First, construct a high-precision remote sensing object extraction system for automated extraction of urban environmental information; 2) Secondly, use GAN to construct a park design generation system based on the external environment, which can quickly infer and generate design schemes from urban environmental information; 3) Finally, introduce Stable Diffusion to optimize the design plan, fill in details, and expand the resolution of the plan by 64 times. This method can achieve a fully unmanned design automation workflow. The research results show that: 1) The relationship between the inside and outside of the site will affect the algorithm generation results. 2) Compared with traditional GAN algorithms, Stable diffusion significantly improve the information richness of the generated results.</div></div>","PeriodicalId":48405,"journal":{"name":"Cities","volume":"166 ","pages":"Article 106181"},"PeriodicalIF":6.0000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cities","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264275125004822","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"URBAN STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
The development of generative design driven by artificial intelligence algorithms is speedy. There are two research gaps in the current research: 1) Most studies only focus on the relationship between design elements and pay little attention to the external information of the site; 2) GAN and other traditional generative algorithms generate results with low resolution and insufficient details. To address these two problems, we integrate GAN, Stable diffusion multimodal large-scale image pre-training model to construct a full-process park generative design method: 1) First, construct a high-precision remote sensing object extraction system for automated extraction of urban environmental information; 2) Secondly, use GAN to construct a park design generation system based on the external environment, which can quickly infer and generate design schemes from urban environmental information; 3) Finally, introduce Stable Diffusion to optimize the design plan, fill in details, and expand the resolution of the plan by 64 times. This method can achieve a fully unmanned design automation workflow. The research results show that: 1) The relationship between the inside and outside of the site will affect the algorithm generation results. 2) Compared with traditional GAN algorithms, Stable diffusion significantly improve the information richness of the generated results.
期刊介绍:
Cities offers a comprehensive range of articles on all aspects of urban policy. It provides an international and interdisciplinary platform for the exchange of ideas and information between urban planners and policy makers from national and local government, non-government organizations, academia and consultancy. The primary aims of the journal are to analyse and assess past and present urban development and management as a reflection of effective, ineffective and non-existent planning policies; and the promotion of the implementation of appropriate urban policies in both the developed and the developing world.