Yong Deng , Tingya Jia , Jingqiao Yang , Huanfang Wang , Shaohua Liu , Chao Zhang
{"title":"Effect of high-temperature preloading on tensile properties and failure mechanisms of SiCf/SiC composites","authors":"Yong Deng , Tingya Jia , Jingqiao Yang , Huanfang Wang , Shaohua Liu , Chao Zhang","doi":"10.1016/j.compositesb.2025.112762","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the evolution of mechanical properties and damage mechanisms of SiC<sub>f</sub>/SiC composites under multi-field coupling environments is essential for ensuring their safety and reliability in aerospace applications. This study investigates the tensile properties and failure mechanisms of 2D plain-weave SiC<sub>f</sub>/SiC composites from room temperature to 1400 °C, with a particular focus on the influence of high-temperature preloading. Through macroscopic and microscopic morphology analysis, the key factors affecting tensile strength and failure mechanisms were systematically examined. The effects of the magnitude and holding time of high-temperature preloading on the tensile properties of SiC<sub>f</sub>/SiC composites were also explored, revealing significant impacts in the medium-temperature range. The results indicate that the tensile strength and matrix cracking stress decrease approximately linearly with increasing temperature for samples without high-temperature preloading. However, the difference in tensile strength between samples with and without high-temperature preloading diminishes as temperature increases. The degradation of component properties in SiC<sub>f</sub>/SiC composites and high-temperature oxidation contribute to the decline in their tensile strengths. The healing of surface cracks induced by rapid oxidation at 1400 °C significantly reduces the impact of high-temperature preloading. A physics-based theoretical model for their high-temperature tensile strengths was established. This research provides valuable insights for evaluating the tensile properties of SiC<sub>f</sub>/SiC composites under thermal-mechanical-oxygenic coupling environments.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"305 ","pages":"Article 112762"},"PeriodicalIF":14.2000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825006687","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the evolution of mechanical properties and damage mechanisms of SiCf/SiC composites under multi-field coupling environments is essential for ensuring their safety and reliability in aerospace applications. This study investigates the tensile properties and failure mechanisms of 2D plain-weave SiCf/SiC composites from room temperature to 1400 °C, with a particular focus on the influence of high-temperature preloading. Through macroscopic and microscopic morphology analysis, the key factors affecting tensile strength and failure mechanisms were systematically examined. The effects of the magnitude and holding time of high-temperature preloading on the tensile properties of SiCf/SiC composites were also explored, revealing significant impacts in the medium-temperature range. The results indicate that the tensile strength and matrix cracking stress decrease approximately linearly with increasing temperature for samples without high-temperature preloading. However, the difference in tensile strength between samples with and without high-temperature preloading diminishes as temperature increases. The degradation of component properties in SiCf/SiC composites and high-temperature oxidation contribute to the decline in their tensile strengths. The healing of surface cracks induced by rapid oxidation at 1400 °C significantly reduces the impact of high-temperature preloading. A physics-based theoretical model for their high-temperature tensile strengths was established. This research provides valuable insights for evaluating the tensile properties of SiCf/SiC composites under thermal-mechanical-oxygenic coupling environments.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.