Prediction of non-equilibrium condensation onset in a methane–carbon dioxide gas mixture flow through a supersonic separator nozzle and its operational parameters

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS
Vinicius H. de Freitas, Julián C. Restrepo, José R. Simões-Moreira
{"title":"Prediction of non-equilibrium condensation onset in a methane–carbon dioxide gas mixture flow through a supersonic separator nozzle and its operational parameters","authors":"Vinicius H. de Freitas,&nbsp;Julián C. Restrepo,&nbsp;José R. Simões-Moreira","doi":"10.1016/j.applthermaleng.2025.127199","DOIUrl":null,"url":null,"abstract":"<div><div>Amid rising energy demand and global efforts to reduce fossil fuel use, natural gas remains a critical energy source. A key challenge in its processing is the removal of carbon dioxide (CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>). Supersonic separators have emerged as promising passive devices for this purpose. However, most existing studies focus on limited operating conditions or rely on computationally expensive CFD models. This study presents and validates a numerical routine to predict the operational conditions under which phase change occurs in a supersonic separator nozzle. The approach combines the internally consistent homogeneous nucleation model with isentropic expansion and real-gas properties to compute nucleation rates. The working fluid is modeled as a binary mixture of methane and CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, considering real-gas effects for mixture properties after using a state-of-the-art equation-of-state. The influence of the critical nucleation rate on non-equilibrium condensation was examined to assess condensation onset. Despite variations across several orders of magnitude, Wilson lines showed minimal divergence for the same stagnation conditions, indicating low sensitivity to this parameter in the evaluated conditions. Model validation against experimental data revealed small differences, supporting the method’s reliability in capturing condensation phenomena. Phase-change onset and stagnation properties were analyzed for different methane–CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> mixtures. Increasing CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> content narrows the stagnation fields, suggesting reduced operational flexibility at higher CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> fractions—an important consideration for carbon capture applications. This methodology offers a practical tool for designing supersonic separators and evaluating new operating scenarios. It also identifies the Mach number range necessary to achieve phase change, supporting the development of efficient separation systems.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"278 ","pages":"Article 127199"},"PeriodicalIF":6.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125017910","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Amid rising energy demand and global efforts to reduce fossil fuel use, natural gas remains a critical energy source. A key challenge in its processing is the removal of carbon dioxide (CO2). Supersonic separators have emerged as promising passive devices for this purpose. However, most existing studies focus on limited operating conditions or rely on computationally expensive CFD models. This study presents and validates a numerical routine to predict the operational conditions under which phase change occurs in a supersonic separator nozzle. The approach combines the internally consistent homogeneous nucleation model with isentropic expansion and real-gas properties to compute nucleation rates. The working fluid is modeled as a binary mixture of methane and CO2, considering real-gas effects for mixture properties after using a state-of-the-art equation-of-state. The influence of the critical nucleation rate on non-equilibrium condensation was examined to assess condensation onset. Despite variations across several orders of magnitude, Wilson lines showed minimal divergence for the same stagnation conditions, indicating low sensitivity to this parameter in the evaluated conditions. Model validation against experimental data revealed small differences, supporting the method’s reliability in capturing condensation phenomena. Phase-change onset and stagnation properties were analyzed for different methane–CO2 mixtures. Increasing CO2 content narrows the stagnation fields, suggesting reduced operational flexibility at higher CO2 fractions—an important consideration for carbon capture applications. This methodology offers a practical tool for designing supersonic separators and evaluating new operating scenarios. It also identifies the Mach number range necessary to achieve phase change, supporting the development of efficient separation systems.
超声速分离喷嘴对甲烷-二氧化碳混合气非平衡冷凝的预测及其操作参数
在能源需求不断增长和全球努力减少化石燃料使用的背景下,天然气仍然是一种重要的能源。处理过程中的一个关键挑战是二氧化碳的去除。超音速分离器作为一种很有前途的无源装置已经出现。然而,现有的大多数研究都集中在有限的运行条件下,或者依赖于计算成本高昂的CFD模型。本文提出并验证了一种预测超声速分离器喷嘴相变工况的数值方法。该方法将内一致均匀成核模型与等熵膨胀和实际气体性质相结合,计算成核速率。工作流体被建模为甲烷和二氧化碳的二元混合物,在使用最先进的状态方程后考虑了混合特性的实际气体效应。研究了临界成核速率对非平衡缩合反应的影响,以评估缩合反应的发生。尽管存在几个数量级的变化,但在相同的停滞条件下,威尔逊线显示出最小的分歧,表明在评估条件下对该参数的敏感性较低。模型验证与实验数据的差异很小,支持该方法在捕获冷凝现象方面的可靠性。分析了不同甲烷-二氧化碳混合物的相变起始和滞止特性。增加二氧化碳含量会缩小停滞范围,这表明在二氧化碳含量较高时操作灵活性降低,这是碳捕获应用的一个重要考虑因素。该方法为设计超声速分离器和评估新的操作场景提供了实用的工具。它还确定了实现相变所需的马赫数范围,支持高效分离系统的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信