Well-posedness of second-order uniformly elliptic PDEs with Neumann conditions

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Haruki Kono
{"title":"Well-posedness of second-order uniformly elliptic PDEs with Neumann conditions","authors":"Haruki Kono","doi":"10.1016/j.aml.2025.109670","DOIUrl":null,"url":null,"abstract":"<div><div>Extending the results of Nardi and Giacomo (2015), this note establishes an existence and uniqueness result for second-order uniformly elliptic PDEs in divergence form with Neumann boundary conditions. A Schauder estimate and a stability result are also derived.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"171 ","pages":"Article 109670"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002204","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Extending the results of Nardi and Giacomo (2015), this note establishes an existence and uniqueness result for second-order uniformly elliptic PDEs in divergence form with Neumann boundary conditions. A Schauder estimate and a stability result are also derived.
具有Neumann条件的二阶一致椭圆偏微分方程的适定性
本文推广了Nardi和Giacomo(2015)的结果,建立了具有Neumann边界条件的散度形式二阶一致椭圆偏微分方程的存在唯一性结果。还得到了一个Schauder估计和一个稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信