{"title":"An accurate measurement of parametric array using a spurious sound filter topologically equivalent to a half-wavelength resonator","authors":"Woongji Kim , Beomseok Oh , Junsuk Rho , Wonkyu Moon","doi":"10.1016/j.apacoust.2025.110910","DOIUrl":null,"url":null,"abstract":"<div><div>Parametric arrays (PA) offer exceptional directivity and compactness compared to conventional loudspeakers, facilitating various acoustic applications. However, accurate measurement of audio signals generated by PA remains challenging due to spurious ultrasonic sounds arising from microphone nonlinearities. Existing filtering methods, including Helmholtz resonators, phononic crystals, polymer films, and grazing incidence techniques, exhibit practical constraints such as size limitations, fabrication complexity, or insufficient attenuation. To address these issues, we propose and demonstrate a novel acoustic filter based on the design of a half-wavelength resonator. The developed filter exploits the nodal plane in acoustic pressure distribution, effectively minimizing microphone exposure to targeted ultrasonic frequencies. Fabrication via stereolithography 3D printing ensures high dimensional accuracy, which is crucial for high-frequency acoustic filters. Finite element method simulations guided filter optimization for suppression frequencies at 40 kHz and 60 kHz, achieving high transmission loss around 60 dB. Experimental validations confirm the filter's superior performance in significantly reducing spurious acoustic signals, as reflected in frequency response, beam pattern, and propagation curve measurements. The proposed filter ensures stable and precise acoustic characterization, independent of measurement distances and incidence angles. This new approach not only improves measurement accuracy but also enhances reliability and reproducibility in parametric array research and development.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":"240 ","pages":"Article 110910"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X25003822","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Parametric arrays (PA) offer exceptional directivity and compactness compared to conventional loudspeakers, facilitating various acoustic applications. However, accurate measurement of audio signals generated by PA remains challenging due to spurious ultrasonic sounds arising from microphone nonlinearities. Existing filtering methods, including Helmholtz resonators, phononic crystals, polymer films, and grazing incidence techniques, exhibit practical constraints such as size limitations, fabrication complexity, or insufficient attenuation. To address these issues, we propose and demonstrate a novel acoustic filter based on the design of a half-wavelength resonator. The developed filter exploits the nodal plane in acoustic pressure distribution, effectively minimizing microphone exposure to targeted ultrasonic frequencies. Fabrication via stereolithography 3D printing ensures high dimensional accuracy, which is crucial for high-frequency acoustic filters. Finite element method simulations guided filter optimization for suppression frequencies at 40 kHz and 60 kHz, achieving high transmission loss around 60 dB. Experimental validations confirm the filter's superior performance in significantly reducing spurious acoustic signals, as reflected in frequency response, beam pattern, and propagation curve measurements. The proposed filter ensures stable and precise acoustic characterization, independent of measurement distances and incidence angles. This new approach not only improves measurement accuracy but also enhances reliability and reproducibility in parametric array research and development.
期刊介绍:
Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense.
Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems.
Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.