Qing Xu , Pengfei Li , Chongbang Xu , Siqing Wang , Sulei Zhang
{"title":"Investigation of the spatial distribution of tunnel seepage under varying drainage capacities in water-abundant regions","authors":"Qing Xu , Pengfei Li , Chongbang Xu , Siqing Wang , Sulei Zhang","doi":"10.1016/j.undsp.2025.02.010","DOIUrl":null,"url":null,"abstract":"<div><div>Effective control of the tunnel seepage field is crucial in water-abundant regions to ensure the safety and stability of underground structures. Therefore, it is imperative to investigate the effects of the geological factors and tunnel permeability parameters on the drainage capacities of such structures. The Tongzi Tunnel was subjected to model tests using a self-developed testing apparatus to investigate the spatial distribution of tunnel seepage under varying conditions of sand permeability, number of primary support layers, and number of primary support openings. Subsequently, numerical models were developed to validate the observed tunnel seepage field based on experimental conditions. On this basis, an effective water pressure ratio <span><math><mrow><mi>η</mi></mrow></math></span> is proposed to evaluate the hydraulic safety of the tunnel spatial distribution. The results indicated a positive correlation between the tunnel water discharge and sand permeability, primary support layers, and primary support openings. Among these factors, the primary support openings exhibited the highest sensitivity to tunnel water discharge, whereas the impact of the primary support layers was relatively low. Additionally, the external water pressure in the tunnel exhibited a negative correlation with sand permeability, primary support layers, and primary support openings. The sensitivity ranking of the structural water pressure fluctuations to the parameters is as follows: primary support openings > sand permeability > primary support layers. Furthermore, the longitudinal water pressure values in the tunnel gradually increase from Section A (circular drainage section) to Section B (middle circular drainage section). Model tests and numerical simulations were performed to demonstrate the data reliability. Finally, with the increase of sand permeability and the number of primary support openings, the effective drainage area (<em>η</em> < 0.6) around the tunnel spatial gradually expands. Besides, the tunnel longitudinal effective drainage interval progressively degrades from the vault (A1 area) to the tunnel bottom (A7 area), and even the tunnel bottom areas are not effectively drained (<em>η</em> > 0.6).</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"23 ","pages":"Pages 343-361"},"PeriodicalIF":8.3000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967425000479","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Effective control of the tunnel seepage field is crucial in water-abundant regions to ensure the safety and stability of underground structures. Therefore, it is imperative to investigate the effects of the geological factors and tunnel permeability parameters on the drainage capacities of such structures. The Tongzi Tunnel was subjected to model tests using a self-developed testing apparatus to investigate the spatial distribution of tunnel seepage under varying conditions of sand permeability, number of primary support layers, and number of primary support openings. Subsequently, numerical models were developed to validate the observed tunnel seepage field based on experimental conditions. On this basis, an effective water pressure ratio is proposed to evaluate the hydraulic safety of the tunnel spatial distribution. The results indicated a positive correlation between the tunnel water discharge and sand permeability, primary support layers, and primary support openings. Among these factors, the primary support openings exhibited the highest sensitivity to tunnel water discharge, whereas the impact of the primary support layers was relatively low. Additionally, the external water pressure in the tunnel exhibited a negative correlation with sand permeability, primary support layers, and primary support openings. The sensitivity ranking of the structural water pressure fluctuations to the parameters is as follows: primary support openings > sand permeability > primary support layers. Furthermore, the longitudinal water pressure values in the tunnel gradually increase from Section A (circular drainage section) to Section B (middle circular drainage section). Model tests and numerical simulations were performed to demonstrate the data reliability. Finally, with the increase of sand permeability and the number of primary support openings, the effective drainage area (η < 0.6) around the tunnel spatial gradually expands. Besides, the tunnel longitudinal effective drainage interval progressively degrades from the vault (A1 area) to the tunnel bottom (A7 area), and even the tunnel bottom areas are not effectively drained (η > 0.6).
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.