{"title":"The symmetry regularization of 1D generalized Kepler problems","authors":"Junwei Ma, Guowu Meng, Jiazhuo Xiao","doi":"10.1016/j.geomphys.2025.105576","DOIUrl":null,"url":null,"abstract":"<div><div>The 1D generalized Kepler problem with magnetic charge <span><math><mi>μ</mi><mo>≥</mo><mn>0</mn></math></span> is the Hamiltonian system for which the phase space is the total cotangent space of the half line <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>:</mo><mo>=</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> and the Hamiltonian is <span><math><mi>H</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mfrac><mrow><msup><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></mfrac></math></span> where <span><math><mi>q</mi><mo>∈</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span> is the position and <span><math><mi>p</mi><mo>∈</mo><mi>R</mi></math></span> is the momentum. Let <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span> be the positive portion of the phase space (i.e., <span><math><mo>{</mo><mi>H</mi><mo>></mo><mn>0</mn><mo>}</mo></math></span>) and <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mo>−</mo></mrow></msub></math></span> be the negative portion of the phase space. Denote by <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> the co-adjoint orbit of <span><math><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo><mo>≡</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup></math></span> defined by conditions <span><math><msubsup><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>−</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>−</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></math></span>. It is demonstrated that there is a symplectic embedding <span><math><msub><mrow><mi>ι</mi></mrow><mrow><mo>−</mo></mrow></msub></math></span>: <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mo>−</mo></mrow></msub><mo>→</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>μ</mi></mrow></msub></math></span> such that the image of <span><math><msub><mrow><mi>ι</mi></mrow><mrow><mo>−</mo></mrow></msub></math></span> is dense and open, and any Kepler motion (i.e. Hamiltonian motion under <em>H</em>) inside <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mo>−</mo></mrow></msub></math></span>, after being embedded via <span><math><msub><mrow><mi>ι</mi></mrow><mrow><mo>−</mo></mrow></msub></math></span>, extends to a complete Hamiltonian motion inside <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>μ</mi></mrow></msub></math></span>. The positive case is similar, but with <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>μ</mi></mrow></msub></math></span> replaced by <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>μ</mi><mo>/</mo><mn>2</mn></mrow></msub></math></span>, i.e., there is a symplectic embedding <span><math><msub><mrow><mi>ι</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>: <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>→</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>μ</mi><mo>/</mo><mn>2</mn></mrow></msub></math></span> that satisfies similar conditions. A revelation from the work here is that the term “regularization map” is a misnomer, and the correct name is S-duality, a term that appears in string theory/gauge theory and resembles the Fourier transform.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105576"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025001603","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The 1D generalized Kepler problem with magnetic charge is the Hamiltonian system for which the phase space is the total cotangent space of the half line and the Hamiltonian is where is the position and is the momentum. Let be the positive portion of the phase space (i.e., ) and be the negative portion of the phase space. Denote by the co-adjoint orbit of defined by conditions and . It is demonstrated that there is a symplectic embedding : such that the image of is dense and open, and any Kepler motion (i.e. Hamiltonian motion under H) inside , after being embedded via , extends to a complete Hamiltonian motion inside . The positive case is similar, but with replaced by , i.e., there is a symplectic embedding : that satisfies similar conditions. A revelation from the work here is that the term “regularization map” is a misnomer, and the correct name is S-duality, a term that appears in string theory/gauge theory and resembles the Fourier transform.
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity