Fatigue behavior and failure mechanism of 3D-printed continuous glass fiber-reinforced PLA composites under rotating bending fatigue

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES
Mehrnoosh Javadian, Ali Dadashi, Abbasali Bagheri, Mohammad Azadi
{"title":"Fatigue behavior and failure mechanism of 3D-printed continuous glass fiber-reinforced PLA composites under rotating bending fatigue","authors":"Mehrnoosh Javadian,&nbsp;Ali Dadashi,&nbsp;Abbasali Bagheri,&nbsp;Mohammad Azadi","doi":"10.1016/j.jcomc.2025.100623","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the fatigue behavior and failure mechanisms of 3D-printed polylactic acid (PLA) composites reinforced with continuous glass fibers under rotating bending fatigue. Composite specimens were fabricated using a modified fused deposition modeling (FDM) printer with fiber volume fractions of 16 %. Fatigue testing was conducted under fully reversed loading at room temperature, and fracture surfaces were analyzed using field-emission scanning electron microscopy (FE-SEM). Results indicate that fiber reinforcement significantly enhances fatigue resistance, with fiber orientation (+45/-45) and infill density playing critical roles in improving performance. A Poisson regression model confirmed the statistical significance of all main effects and two interactions, with print direction having the greatest influence. Fractographic analysis revealed void, fiber breakage, and fiber-matrix debonding as key failure modes. The study provides crucial insights for optimizing composite materials for applications involving cyclic loading.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"17 ","pages":"Article 100623"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682025000660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the fatigue behavior and failure mechanisms of 3D-printed polylactic acid (PLA) composites reinforced with continuous glass fibers under rotating bending fatigue. Composite specimens were fabricated using a modified fused deposition modeling (FDM) printer with fiber volume fractions of 16 %. Fatigue testing was conducted under fully reversed loading at room temperature, and fracture surfaces were analyzed using field-emission scanning electron microscopy (FE-SEM). Results indicate that fiber reinforcement significantly enhances fatigue resistance, with fiber orientation (+45/-45) and infill density playing critical roles in improving performance. A Poisson regression model confirmed the statistical significance of all main effects and two interactions, with print direction having the greatest influence. Fractographic analysis revealed void, fiber breakage, and fiber-matrix debonding as key failure modes. The study provides crucial insights for optimizing composite materials for applications involving cyclic loading.
旋转弯曲疲劳下3d打印连续玻璃纤维增强PLA复合材料的疲劳行为及失效机理
研究了连续玻璃纤维增强3d打印聚乳酸(PLA)复合材料在旋转弯曲疲劳下的疲劳行为和破坏机制。使用纤维体积分数为16%的改进熔融沉积建模(FDM)打印机制备复合材料样品。在室温下进行了完全反向载荷下的疲劳试验,并用场发射扫描电镜(FE-SEM)分析了断口表面。结果表明,纤维增强显著提高了材料的抗疲劳性能,纤维取向(+45/-45)和填充密度是提高材料抗疲劳性能的关键因素。泊松回归模型证实了所有主效应和两种相互作用的统计显著性,其中印刷方向的影响最大。断口分析显示,空洞、纤维断裂和纤维-基体脱粘是主要的破坏模式。该研究为优化复合材料的循环加载应用提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信