Bipartite friends and strangers walking on bipartite graphs

IF 0.7 3区 数学 Q2 MATHEMATICS
Ryan Jeong
{"title":"Bipartite friends and strangers walking on bipartite graphs","authors":"Ryan Jeong","doi":"10.1016/j.disc.2025.114667","DOIUrl":null,"url":null,"abstract":"<div><div>Given <em>n</em>-vertex simple graphs <em>X</em> and <em>Y</em>, the friends-and-strangers graph <span><math><mrow><mi>FS</mi></mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> has as its vertices all <em>n</em>! bijections from <span><math><mi>V</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> to <span><math><mi>V</mi><mo>(</mo><mi>Y</mi><mo>)</mo></math></span>, where two bijections are adjacent if and only if they differ on two adjacent elements of <span><math><mi>V</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> whose mappings are adjacent in <em>Y</em>. We consider the setting where <em>X</em> and <em>Y</em> are both edge-subgraphs of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>r</mi></mrow></msub></math></span>: due to a parity obstruction, <span><math><mrow><mi>FS</mi></mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> is always disconnected in this setting. Modestly improving a result of Bangachev, we show that if <em>X</em> and <em>Y</em> respectively have minimum degrees <span><math><mi>δ</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> and <span><math><mi>δ</mi><mo>(</mo><mi>Y</mi><mo>)</mo></math></span> and they satisfy <span><math><mi>δ</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>+</mo><mi>δ</mi><mo>(</mo><mi>Y</mi><mo>)</mo><mo>≥</mo><mo>⌊</mo><mn>3</mn><mi>r</mi><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>+</mo><mn>1</mn></math></span>, then <span><math><mrow><mi>FS</mi></mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> has exactly two connected components. This proves that the cutoff for <span><math><mrow><mi>FS</mi></mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> to avoid isolated vertices is equal to the cutoff for <span><math><mrow><mi>FS</mi></mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> to have exactly two connected components. We also consider a probabilistic setup in which we fix <em>Y</em> to be <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>r</mi></mrow></msub></math></span>, but randomly generate <em>X</em> by including each edge in <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>r</mi></mrow></msub></math></span> independently with probability <em>p</em>. Invoking a result of Zhu, we exhibit a phase transition phenomenon with threshold function <span><math><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>r</mi><mo>)</mo><mo>/</mo><mi>r</mi></math></span>. More precisely, below the threshold, <span><math><mrow><mi>FS</mi></mrow><mo>(</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>r</mi></mrow></msub><mo>)</mo></math></span> has more than two connected components with high probability, while above the threshold, <span><math><mrow><mi>FS</mi></mrow><mo>(</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>r</mi></mrow></msub><mo>)</mo></math></span> has exactly two connected components with high probability. Altogether, our results settle a conjecture and completely answer two problems of Alon, Defant, and Kravitz.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114667"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002754","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given n-vertex simple graphs X and Y, the friends-and-strangers graph FS(X,Y) has as its vertices all n! bijections from V(X) to V(Y), where two bijections are adjacent if and only if they differ on two adjacent elements of V(X) whose mappings are adjacent in Y. We consider the setting where X and Y are both edge-subgraphs of Kr,r: due to a parity obstruction, FS(X,Y) is always disconnected in this setting. Modestly improving a result of Bangachev, we show that if X and Y respectively have minimum degrees δ(X) and δ(Y) and they satisfy δ(X)+δ(Y)3r/2+1, then FS(X,Y) has exactly two connected components. This proves that the cutoff for FS(X,Y) to avoid isolated vertices is equal to the cutoff for FS(X,Y) to have exactly two connected components. We also consider a probabilistic setup in which we fix Y to be Kr,r, but randomly generate X by including each edge in Kr,r independently with probability p. Invoking a result of Zhu, we exhibit a phase transition phenomenon with threshold function (logr)/r. More precisely, below the threshold, FS(X,Kr,r) has more than two connected components with high probability, while above the threshold, FS(X,Kr,r) has exactly two connected components with high probability. Altogether, our results settle a conjecture and completely answer two problems of Alon, Defant, and Kravitz.
在二部图上行走的二部朋友和陌生人
给定n个顶点的简单图X和Y,朋友-陌生人图FS(X,Y)的顶点都是n!从V(X)到V(Y)的双射,其中两个双射相邻当且仅当它们在V(X)的两个相邻元素上不同,而V(X)的映射在Y上相邻。我们考虑X和Y都是Kr,r的边子图的情况:由于宇称阻碍,FS(X,Y)在这种情况下总是断开的。适度改进了Bangachev的结果,证明如果X和Y分别具有最小度δ(X)和δ(Y),且满足δ(X)+δ(Y)≥⌊3r/2⌋+1,则FS(X,Y)恰好有两个连通分量。这证明了FS(X,Y)避免孤立顶点的截止点等于FS(X,Y)恰好有两个连通分量的截止点。我们还考虑了一个概率设置,其中我们将Y固定为Kr,r,但通过以概率p独立地包括Kr,r中的每条边来随机生成X。调用Zhu的结果,我们展示了具有阈值函数(log (r))/r的相变现象。更准确地说,在阈值以下,FS(X,Kr,r)有两个以上的高概率连通分量,而在阈值以上,FS(X,Kr,r)正好有两个高概率连通分量。总之,我们的结果解决了一个猜想,并完全回答了Alon, Defant和Kravitz的两个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信