Jian Zhao , Kai Deng , Xianjun Shao , Zhibin Zhou , Fengqian Xu , Xiaoyu Wang , Yuan Gao
{"title":"Photovoltaic fluctuation-adapted dynamic network pruning for low-voltage distribution network edge computing","authors":"Jian Zhao , Kai Deng , Xianjun Shao , Zhibin Zhou , Fengqian Xu , Xiaoyu Wang , Yuan Gao","doi":"10.1016/j.apenergy.2025.126394","DOIUrl":null,"url":null,"abstract":"<div><div>The inherent volatility of photovoltaic (PV) output necessitates the use of high-complexity deep learning (DL) models for accurate predictions. However, such models operate at full capacity even during stable PV output periods, consuming redundant computational resources and overloading resource-constrained edge devices in low-voltage distribution network (LVDN). To address the above issue, this paper proposes a dynamic network pruning framework that adaptively adjusts DL model complexity based on PV fluctuations. Firstly, a PV fluctuation-sensitive channel importance assessment method is proposed to identify the redundant structures in DL models. Subsequently, a lightweight optimization framework with PV operational constraints is developed to adjusts pruning thresholds based on PV output uncertainty and edge resource availability. Finally, a dynamic network pruning technique is proposed to adaptively balance model accuracy and computational complexity in response to real-time LVDN operation status and PV output volatility, ensuring pruned sub-networks align with the evolving PV data characteristics. The empirical results show that the proposed method can provide a practical solution for deploying lightweight DL models on edge devices. Specifically, our method effectively compresses 72 % FLOPs of the DL model in PV fluctuation challenging environments with slight accuracy degradation.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"397 ","pages":"Article 126394"},"PeriodicalIF":11.0000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925011249","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The inherent volatility of photovoltaic (PV) output necessitates the use of high-complexity deep learning (DL) models for accurate predictions. However, such models operate at full capacity even during stable PV output periods, consuming redundant computational resources and overloading resource-constrained edge devices in low-voltage distribution network (LVDN). To address the above issue, this paper proposes a dynamic network pruning framework that adaptively adjusts DL model complexity based on PV fluctuations. Firstly, a PV fluctuation-sensitive channel importance assessment method is proposed to identify the redundant structures in DL models. Subsequently, a lightweight optimization framework with PV operational constraints is developed to adjusts pruning thresholds based on PV output uncertainty and edge resource availability. Finally, a dynamic network pruning technique is proposed to adaptively balance model accuracy and computational complexity in response to real-time LVDN operation status and PV output volatility, ensuring pruned sub-networks align with the evolving PV data characteristics. The empirical results show that the proposed method can provide a practical solution for deploying lightweight DL models on edge devices. Specifically, our method effectively compresses 72 % FLOPs of the DL model in PV fluctuation challenging environments with slight accuracy degradation.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.