Muge Yucel , Ahmet Önder , Tolunay Kurt , Berfin Keles , Merve Beyaz , Yaren Karadağ , İrem Yaşyerli , A. Irem Celik , Fatih Sema , Senem Tetik , Sanem Dinçkal , Soner Karabacak , Palaniappan Alagappan , Bo Liedberg , Umit Hakan Yildiz
{"title":"Digital sensing technologies in cancer care: A new era in early detection and personalized diagnosis","authors":"Muge Yucel , Ahmet Önder , Tolunay Kurt , Berfin Keles , Merve Beyaz , Yaren Karadağ , İrem Yaşyerli , A. Irem Celik , Fatih Sema , Senem Tetik , Sanem Dinçkal , Soner Karabacak , Palaniappan Alagappan , Bo Liedberg , Umit Hakan Yildiz","doi":"10.1016/j.biosx.2025.100651","DOIUrl":null,"url":null,"abstract":"<div><div>Digital sensor platforms are systems that integrate sensors with digital technology, which revolutionize data collection, processing, and transmission for enabling real-time, high-precision and automated diagnostics. These platforms often serve as the backbone of modern monitoring systems, enabling real-time data acquisition and analysis for a wide range of applications. Recent advancements in digital sensor platforms have paved the way for transformative innovations in cancer diagnosis. These cutting-edge technologies offer unprecedented opportunities to facilitate early detection, improve diagnostic accuracy, and personalize treatment methods. This review explores the landscape of digital sensor platforms in the context of cancer diagnosis, providing an overview of their principles, functionalities, and clinical applications. The review further illustrates that biosensors, lab-on-a-chip (LOC) devices and wearable sensors have leveraged on nanotechnology, biorecognition materials and artificial intelligence (AI) for revolutionizing cancer diagnosis. It consolidates the recent advances in digital sensor platforms for cancer diagnosis and the associated critical challenges, such as regulatory concerns, standardization, and ethical considerations. Further, the review summarizes the feasibility for the integration of digital sensor platforms with routine clinical practices for the development of efficient cancer diagnosis and treatment methods.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"26 ","pages":"Article 100651"},"PeriodicalIF":10.6100,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137025000780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Digital sensor platforms are systems that integrate sensors with digital technology, which revolutionize data collection, processing, and transmission for enabling real-time, high-precision and automated diagnostics. These platforms often serve as the backbone of modern monitoring systems, enabling real-time data acquisition and analysis for a wide range of applications. Recent advancements in digital sensor platforms have paved the way for transformative innovations in cancer diagnosis. These cutting-edge technologies offer unprecedented opportunities to facilitate early detection, improve diagnostic accuracy, and personalize treatment methods. This review explores the landscape of digital sensor platforms in the context of cancer diagnosis, providing an overview of their principles, functionalities, and clinical applications. The review further illustrates that biosensors, lab-on-a-chip (LOC) devices and wearable sensors have leveraged on nanotechnology, biorecognition materials and artificial intelligence (AI) for revolutionizing cancer diagnosis. It consolidates the recent advances in digital sensor platforms for cancer diagnosis and the associated critical challenges, such as regulatory concerns, standardization, and ethical considerations. Further, the review summarizes the feasibility for the integration of digital sensor platforms with routine clinical practices for the development of efficient cancer diagnosis and treatment methods.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.