Kazi Mustafizur Rahman, Md Mushfiqur Rahman, Sadia Islam, Hasib Md Abid Bin Farid, Md Faysal Nayan
{"title":"Design and analysis of a magneto-resistance-based device to mitigate risks from high magnetic field exposure","authors":"Kazi Mustafizur Rahman, Md Mushfiqur Rahman, Sadia Islam, Hasib Md Abid Bin Farid, Md Faysal Nayan","doi":"10.1016/j.biosx.2025.100654","DOIUrl":null,"url":null,"abstract":"<div><div>The motivation is to develop a device for pacemaker-implanted patients that would automatically alert them in an intense magnetic field. Moreover, the employees working near any strong magnetic environment would benefit by avoiding high exposure. This research delves into a comprehensive process for the implementation and characterization of such a wearable based on the magnetoresistance effect, which is a function of the magnetic field. The program executes on the Arduino IDE platform. Samples are taken for varying magnetic flux density along each axis, for changes in distance of 2.5 mm. The calculations take place accordingly and provide outputs in microtesla units. Subsequently, the device is analyzed by plotting the responses, and it also helps to understand the working procedure. For a certain axis, the magnetic field is generally stronger than others. The goal is to determine the highest absolute value at any instance, including the Earth's geomagnetic field of 22–67 μT. Regulatory standards are followed to divide the magnetic flux density into four states: power saver (below 150 μT), safe (150–500 μT), unsafe (500–750 μT), and danger (over 750 μT). These values consist of ±20 μT error, which is quite insignificant. Depending on the state, the novel device generates different warning signals to mitigate risk from magnetic fields. From the error bar plot, it is realized that the percentage of error decreases while calculating higher magnetic flux. The errors could be reduced remarkably by ensuring better calibration and compensation techniques in the future.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"26 ","pages":"Article 100654"},"PeriodicalIF":10.6100,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137025000810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The motivation is to develop a device for pacemaker-implanted patients that would automatically alert them in an intense magnetic field. Moreover, the employees working near any strong magnetic environment would benefit by avoiding high exposure. This research delves into a comprehensive process for the implementation and characterization of such a wearable based on the magnetoresistance effect, which is a function of the magnetic field. The program executes on the Arduino IDE platform. Samples are taken for varying magnetic flux density along each axis, for changes in distance of 2.5 mm. The calculations take place accordingly and provide outputs in microtesla units. Subsequently, the device is analyzed by plotting the responses, and it also helps to understand the working procedure. For a certain axis, the magnetic field is generally stronger than others. The goal is to determine the highest absolute value at any instance, including the Earth's geomagnetic field of 22–67 μT. Regulatory standards are followed to divide the magnetic flux density into four states: power saver (below 150 μT), safe (150–500 μT), unsafe (500–750 μT), and danger (over 750 μT). These values consist of ±20 μT error, which is quite insignificant. Depending on the state, the novel device generates different warning signals to mitigate risk from magnetic fields. From the error bar plot, it is realized that the percentage of error decreases while calculating higher magnetic flux. The errors could be reduced remarkably by ensuring better calibration and compensation techniques in the future.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.