{"title":"Learning Li-ion battery health and degradation modes from data with aging-aware circuit models","authors":"Zihao Zhou , Antti Aitio , David Howey","doi":"10.1016/j.apenergy.2025.126375","DOIUrl":null,"url":null,"abstract":"<div><div>Non-invasive estimation of Li-ion battery state-of-health from operational data is valuable for battery applications, but remains challenging. Pure model-based methods may suffer from inaccuracy and long-term instability of parameter estimates, whereas pure data-driven methods rely heavily on training data quality and quantity, causing lack of generality when extrapolating to unseen cases. We apply an aging-aware equivalent circuit model for health estimation, combining the flexibility of data-driven techniques within a model-based approach. A simplified electrical model with voltage source and resistor incorporates Gaussian process regression to learn capacity fade over time and also the dependence of resistance on operating conditions and time. The approach was validated against two datasets and shown to give accurate performance with less than 1 % relative root mean square error (RMSE) in capacity and less than 2 % mean absolute percentage error (MAPE). Critically, we show that changes from the open circuit voltage versus state-of-charge function will strongly influence the learnt resistance. We use this feature to further estimate <em>in operando</em> differential voltage curves from operational data.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"397 ","pages":"Article 126375"},"PeriodicalIF":11.0000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925011055","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Non-invasive estimation of Li-ion battery state-of-health from operational data is valuable for battery applications, but remains challenging. Pure model-based methods may suffer from inaccuracy and long-term instability of parameter estimates, whereas pure data-driven methods rely heavily on training data quality and quantity, causing lack of generality when extrapolating to unseen cases. We apply an aging-aware equivalent circuit model for health estimation, combining the flexibility of data-driven techniques within a model-based approach. A simplified electrical model with voltage source and resistor incorporates Gaussian process regression to learn capacity fade over time and also the dependence of resistance on operating conditions and time. The approach was validated against two datasets and shown to give accurate performance with less than 1 % relative root mean square error (RMSE) in capacity and less than 2 % mean absolute percentage error (MAPE). Critically, we show that changes from the open circuit voltage versus state-of-charge function will strongly influence the learnt resistance. We use this feature to further estimate in operando differential voltage curves from operational data.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.