{"title":"A case study of agent-based modeling of cytoskeletal processes","authors":"Daniel B. Cortes","doi":"10.1016/j.semcdb.2025.103625","DOIUrl":null,"url":null,"abstract":"<div><div>Modern cell and developmental biologists have access to a wide range of tools in microscopy, genetics, and molecular biology that enable the design of experiments that test hypotheses previously thought untestable or inaccessible. Still, even with the most recent advancements in technique and technology, some hypotheses remain just out of reach by <em>in vivo</em> and <em>in vitro</em> experimentation alone. Mathematical modeling is a long-standing method for the exploration of the physical sciences, chemistry and physics, and has provided significant insights into biological processes across all scales of life, from the modeling of population dynamics to the modeling of protein folding and molecular interactions. In this review, I highlight a specific subset of mathematical models – agent-based models, which explicitly simulate individual proteins or protein complexes and their physical interactions with each other within a simulated cellular environment. This review provides two specific case studies, from my own research efforts, which provide direct examples of how a cell biologist can develop mathematical models that complement their research efforts and help drive the generation of new ideas, or test hypotheses that cannot easily be tested through biological methods alone.</div></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"172 ","pages":"Article 103625"},"PeriodicalIF":6.2000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cell & developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084952125000357","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Modern cell and developmental biologists have access to a wide range of tools in microscopy, genetics, and molecular biology that enable the design of experiments that test hypotheses previously thought untestable or inaccessible. Still, even with the most recent advancements in technique and technology, some hypotheses remain just out of reach by in vivo and in vitro experimentation alone. Mathematical modeling is a long-standing method for the exploration of the physical sciences, chemistry and physics, and has provided significant insights into biological processes across all scales of life, from the modeling of population dynamics to the modeling of protein folding and molecular interactions. In this review, I highlight a specific subset of mathematical models – agent-based models, which explicitly simulate individual proteins or protein complexes and their physical interactions with each other within a simulated cellular environment. This review provides two specific case studies, from my own research efforts, which provide direct examples of how a cell biologist can develop mathematical models that complement their research efforts and help drive the generation of new ideas, or test hypotheses that cannot easily be tested through biological methods alone.
期刊介绍:
Seminars in Cell and Developmental Biology is a review journal dedicated to keeping scientists informed of developments in the field of molecular cell and developmental biology, on a topic by topic basis. Each issue is thematic in approach, devoted to an important topic of interest to cell and developmental biologists, focusing on the latest advances and their specific implications.
The aim of each issue is to provide a coordinated, readable, and lively review of a selected area, published rapidly to ensure currency.