Xiaolei Sun , Kanghui Chen , Peng Wang , Yawei Jin , Sanli Qian , Bingyu li , Jianguo Jia , Zhenzhong Zhang , Chunjie Yang , Junbo Ge , Aijun Sun
{"title":"Mitochondrial uptake and translocation by macrophages promotes vascular regeneration in peripheral ischemia","authors":"Xiaolei Sun , Kanghui Chen , Peng Wang , Yawei Jin , Sanli Qian , Bingyu li , Jianguo Jia , Zhenzhong Zhang , Chunjie Yang , Junbo Ge , Aijun Sun","doi":"10.1016/j.bioactmat.2025.06.050","DOIUrl":null,"url":null,"abstract":"<div><div>Mitochondrial transplantation promotes cardiac repair following injury; however, its effects on limb ischemia due to peripheral artery disease (PAD) remain unclear. In this study, transplantation with mitochondria isolated from both murine muscle tissue and human arterial blood significantly promotes revascularization and blood flow recovery in a hindlimb ischemia mouse model. Our findings further show that transplanted mitochondria promote macrophages infiltrating into ischemic regions. Additionally, internalization of the mitochondria promotes macrophage M2-like polarization, resulting in increased pro-angiogenic factors expression and secretion and subsequent endothelial cell and smooth muscle cell proliferation. In conclusion, mitochondrial transplantation shows considerable potential in improving peripheral ischemia and provides therapeutic options for patients with PAD.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"52 ","pages":"Pages 845-856"},"PeriodicalIF":18.0000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25002865","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial transplantation promotes cardiac repair following injury; however, its effects on limb ischemia due to peripheral artery disease (PAD) remain unclear. In this study, transplantation with mitochondria isolated from both murine muscle tissue and human arterial blood significantly promotes revascularization and blood flow recovery in a hindlimb ischemia mouse model. Our findings further show that transplanted mitochondria promote macrophages infiltrating into ischemic regions. Additionally, internalization of the mitochondria promotes macrophage M2-like polarization, resulting in increased pro-angiogenic factors expression and secretion and subsequent endothelial cell and smooth muscle cell proliferation. In conclusion, mitochondrial transplantation shows considerable potential in improving peripheral ischemia and provides therapeutic options for patients with PAD.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.