Renata Lorenzoni, Tobias Fritsch, Sabine Kruschwitz, Giovanni Bruno, Wolfram Schmidt
{"title":"Mechanical analysis of cement-biochar composites using in-situ X-ray microtomography and digital volume correlation","authors":"Renata Lorenzoni, Tobias Fritsch, Sabine Kruschwitz, Giovanni Bruno, Wolfram Schmidt","doi":"10.1016/j.conbuildmat.2025.142511","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses biochar as a potential carbon-sequestering filler in cement and examines its effect on mechanical properties using X-ray computed tomography (XCT) and digital volume correlation (DVC). DVC was reliably used to measure global displacement and has proven to be an effective method for correcting displacement data obtained from mechanical tests conducted without traditional instrumentation, such as extensometer. This made it possible to measure strain and Young's modulus accurately. The results demonstrate that while 5 vol% biochar replacement had minimal effect on mechanical properties, a 25 vol% biochar replacement caused a 35 % reduction in Young’s modulus and 40 % reduction in the ultimate compressive strength. Additionally, DVC detected strain concentrations and predicted material failure locations even when cracks could not be quantified using XCT alone. Moreover, the study reveals that biochar particles, due to their sharp geometry, increase internal shear strain during uniaxial compression, unlike round phases such as pores.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"490 ","pages":"Article 142511"},"PeriodicalIF":8.0000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061825026625","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses biochar as a potential carbon-sequestering filler in cement and examines its effect on mechanical properties using X-ray computed tomography (XCT) and digital volume correlation (DVC). DVC was reliably used to measure global displacement and has proven to be an effective method for correcting displacement data obtained from mechanical tests conducted without traditional instrumentation, such as extensometer. This made it possible to measure strain and Young's modulus accurately. The results demonstrate that while 5 vol% biochar replacement had minimal effect on mechanical properties, a 25 vol% biochar replacement caused a 35 % reduction in Young’s modulus and 40 % reduction in the ultimate compressive strength. Additionally, DVC detected strain concentrations and predicted material failure locations even when cracks could not be quantified using XCT alone. Moreover, the study reveals that biochar particles, due to their sharp geometry, increase internal shear strain during uniaxial compression, unlike round phases such as pores.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.