Yani Peng, Xinyue Zhou, Xuzhao Liu, Min Hu, Boya Qiu, Yilai Jiao, Carmine D’Agostino, Jesus Esteban, Christopher M. A. Parlett, Xiaolei Fan
{"title":"To Alloy or Not to Alloy? The Unexpected Power of Pd–Au Catalyst Physical Mixtures in Efficient HMF Oxidation to FDCA","authors":"Yani Peng, Xinyue Zhou, Xuzhao Liu, Min Hu, Boya Qiu, Yilai Jiao, Carmine D’Agostino, Jesus Esteban, Christopher M. A. Parlett, Xiaolei Fan","doi":"10.1021/acscatal.5c02908","DOIUrl":null,"url":null,"abstract":"Bimetallic palladium (Pd) and gold (Au) systems are active for promoting the selective oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), a key building block for producing polyethylene furanoate, a biobased polymer to substitute poly(ethylene terephthalate). Here, an FDCA yield of ∼99% was achieved over a physical mixture of 1.5 wt % Au/C and 1.5 wt % Pd/C (Pd/Au molar ratio of 5:1) under mild conditions (90 °C, 1 bar O<sub>2</sub>), outperforming bimetallic core–shell Au@Pd/C (∼90% FDCA yield) or alloyed AuPd/C (∼73% FDCA yield) systems. To gain insights into the synergy between the two monometallic catalysts, a series of kinetic studies were conducted employing either HMF or its intermediates as substrates in catalytic oxidation systems over either Pd/C or Au/C. The results show distinct selectivity preference of the two catalysts: Pd/C favors the 2,5-diformylfuran pathway (DFF), while Au/C follows the 5-hydroxymethyl-2-furancarboxylic acid (HFCA) pathway, as well as the presence of base-induced Cannizzaro disproportionation (CD) reactions. The advantage of the physical mixture system is largely attributed to the synergy between the two metals, which promotes the DFF pathway (over the HFCA route) and suppresses CD reactions, facilitating a more rapid progression of the overall oxidation cascade process. Catalyst recycling studies reveal deactivation of the physical mixture system (FDCA yield dropped to 62% after 3 cycles), with detailed comparative characterization of the fresh and used catalysts identifying operando Pd leaching and subsequent deposition onto Au/C, forming a core (Au)–shell (Pd) structure, as the origin of the diminished activity. Our findings challenge the conventional view regarding the alloy superiority in the selective oxidation of HMF, showing that systems based on simple physical mixtures of monometallic catalysts could be a more effective and practical strategy for progressing FDCA production via selective HMF oxidation.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"10 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.5c02908","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bimetallic palladium (Pd) and gold (Au) systems are active for promoting the selective oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), a key building block for producing polyethylene furanoate, a biobased polymer to substitute poly(ethylene terephthalate). Here, an FDCA yield of ∼99% was achieved over a physical mixture of 1.5 wt % Au/C and 1.5 wt % Pd/C (Pd/Au molar ratio of 5:1) under mild conditions (90 °C, 1 bar O2), outperforming bimetallic core–shell Au@Pd/C (∼90% FDCA yield) or alloyed AuPd/C (∼73% FDCA yield) systems. To gain insights into the synergy between the two monometallic catalysts, a series of kinetic studies were conducted employing either HMF or its intermediates as substrates in catalytic oxidation systems over either Pd/C or Au/C. The results show distinct selectivity preference of the two catalysts: Pd/C favors the 2,5-diformylfuran pathway (DFF), while Au/C follows the 5-hydroxymethyl-2-furancarboxylic acid (HFCA) pathway, as well as the presence of base-induced Cannizzaro disproportionation (CD) reactions. The advantage of the physical mixture system is largely attributed to the synergy between the two metals, which promotes the DFF pathway (over the HFCA route) and suppresses CD reactions, facilitating a more rapid progression of the overall oxidation cascade process. Catalyst recycling studies reveal deactivation of the physical mixture system (FDCA yield dropped to 62% after 3 cycles), with detailed comparative characterization of the fresh and used catalysts identifying operando Pd leaching and subsequent deposition onto Au/C, forming a core (Au)–shell (Pd) structure, as the origin of the diminished activity. Our findings challenge the conventional view regarding the alloy superiority in the selective oxidation of HMF, showing that systems based on simple physical mixtures of monometallic catalysts could be a more effective and practical strategy for progressing FDCA production via selective HMF oxidation.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.