Electronic and structural coupling of pentacene on NiO(001)†

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-06-30 DOI:10.1039/D5NR00700C
Jonah Elias Nitschke, David Maximilian Janas, Stefano Ponzoni, Michele Capra, Elena Molteni, Andrea Picone, Alessio Giampietri, Alessandro Ferretti, Shuangying Ma, Alberto Brambilla, Giovanni Zamborlini, Guido Fratesi and Mirko Cinchetti
{"title":"Electronic and structural coupling of pentacene on NiO(001)†","authors":"Jonah Elias Nitschke, David Maximilian Janas, Stefano Ponzoni, Michele Capra, Elena Molteni, Andrea Picone, Alessio Giampietri, Alessandro Ferretti, Shuangying Ma, Alberto Brambilla, Giovanni Zamborlini, Guido Fratesi and Mirko Cinchetti","doi":"10.1039/D5NR00700C","DOIUrl":null,"url":null,"abstract":"<p >Transition-metal oxides (TMOs) are pivotal in modern applications, with recent years seeing intensified research into their interplay with molecular layers as well as the potential of antiferromagnetic TMOs in spintronic applications. In this work we combine both approaches and investigate the adsorption of pentacene on the (001) surface of NiO. By employing a variety of methods such as scanning tunneling microscopy, low energy electron diffraction, angle-resolved photoelectron spectroscopy and density functional theory, we extract the geometrical arrangement of the molecules and their energy level-alignment. Induced by the substrate–molecule interaction, pentacene forms a self-assembled monolayer in a superstructure commensurate with the NiO substrate. Through photoemission orbital tomography, we identify the first three highest occupied molecular orbitals (HOMO, HOMO−1 and HOMO−2) in the photoemission spectra of the NiO/pentacene interface. The absence of the lowest unoccupied molecular orbital (LUMO) suggests negligible charge transfer at the interface, a finding supported by calculations. Nevertheless, we can observe an induced degeneracy of the HOMO−1 and HOMO−2 orbitals as well as an accumulation of molecular electron density toward the substrate. This preservation of the molecules free electron character of frontier orbitals points to potential applications in the optical control of THz spin dynamics in antiferromagnetic NiO, opening a promising pathway for engineering molecule-based functionalization of antiferromagnetic surfaces.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 29","pages":" 17137-17145"},"PeriodicalIF":5.1000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/nr/d5nr00700c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d5nr00700c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition-metal oxides (TMOs) are pivotal in modern applications, with recent years seeing intensified research into their interplay with molecular layers as well as the potential of antiferromagnetic TMOs in spintronic applications. In this work we combine both approaches and investigate the adsorption of pentacene on the (001) surface of NiO. By employing a variety of methods such as scanning tunneling microscopy, low energy electron diffraction, angle-resolved photoelectron spectroscopy and density functional theory, we extract the geometrical arrangement of the molecules and their energy level-alignment. Induced by the substrate–molecule interaction, pentacene forms a self-assembled monolayer in a superstructure commensurate with the NiO substrate. Through photoemission orbital tomography, we identify the first three highest occupied molecular orbitals (HOMO, HOMO−1 and HOMO−2) in the photoemission spectra of the NiO/pentacene interface. The absence of the lowest unoccupied molecular orbital (LUMO) suggests negligible charge transfer at the interface, a finding supported by calculations. Nevertheless, we can observe an induced degeneracy of the HOMO−1 and HOMO−2 orbitals as well as an accumulation of molecular electron density toward the substrate. This preservation of the molecules free electron character of frontier orbitals points to potential applications in the optical control of THz spin dynamics in antiferromagnetic NiO, opening a promising pathway for engineering molecule-based functionalization of antiferromagnetic surfaces.

Abstract Image

Abstract Image

并五苯在NiO(001)上的电子和结构耦合
过渡金属氧化物(TMOs)在现代应用中起着关键作用,近年来对其与分子层的相互作用以及反铁磁性TMOs在自旋电子应用中的潜力的研究日益深入。在这项工作中,我们将这两种方法结合起来,研究了并五苯在NiO(001)表面的吸附。利用扫描隧道显微镜、低能电子衍射、角分辨光电子能谱和密度泛函理论等多种方法,我们提取了分子的几何排列及其能级排列。在底物-分子相互作用的诱导下,并五苯在与NiO底物相匹配的上层结构中形成自组装的单层。通过光电发射轨道层析,我们在NiO/并五烯界面的光电发射光谱中确定了前三个最高占据的分子轨道(HOMO, HOMO−1和HOMO−2)。最低未占据分子轨道(LUMO)的缺失表明,界面上的电荷转移可以忽略不计,这一发现得到了计算的支持。然而,我们可以观察到HOMO - 1和HOMO - 2轨道的诱导简并以及分子电子密度向底物的积累。这种对前沿轨道分子自由电子特征的保留,为反铁磁NiO中太赫兹自旋动力学的光学控制提供了潜在的应用,为反铁磁表面的工程分子功能化开辟了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信