Ultrathin MXene conductive films with percolation-driven electron transport and thickness-dependent microwave absorption/shielding dual functionality†

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-07-01 DOI:10.1039/D5NR01970B
Dong Wen, Xu Zhou, Qianqian Fan, Can Cui, Kan Fang, Ling Ding, Xiaoai Ye, Shihao Zheng, Zhaokun Jiang, Yanke Zhou, Daqiang Zhao and Gui-Gen Wang
{"title":"Ultrathin MXene conductive films with percolation-driven electron transport and thickness-dependent microwave absorption/shielding dual functionality†","authors":"Dong Wen, Xu Zhou, Qianqian Fan, Can Cui, Kan Fang, Ling Ding, Xiaoai Ye, Shihao Zheng, Zhaokun Jiang, Yanke Zhou, Daqiang Zhao and Gui-Gen Wang","doi":"10.1039/D5NR01970B","DOIUrl":null,"url":null,"abstract":"<p >The microwave interaction of ultrathin Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> MXene films is governed by their nanosheet network-modulated conductivity. By integrating a transfer matrix model with the Drude model, this study reveals the dielectric response mechanisms of MXene films under microwave radiation, driven by nanosheet coverage (<em>c</em>) and thickness (<em>t</em>). For monolayer films, coverage-dependent conductivity transitions delineate two distinct regimes: (i) a discontinuous percolation regime (<em>c</em> &lt; 80%) dominated by intra-flake electron transport (|<em>ε</em><small><sub>i</sub></small>/<em>ε</em><small><sub>r</sub></small>| &lt; 1), resulting in high microwave transparency, and (ii) a metallic-like conduction regime (<em>c</em> &gt; 80%) where synergistic intra-/inter-flake hopping (|<em>ε</em><small><sub>i</sub></small>/<em>ε</em><small><sub>r</sub></small>| &gt; 1) enhances interfacial polarization and ohmic loss, enabling 27% maximum microwave absorption at a high sheet conductivity of ∼0.001 S (<em>c</em> = 93%). For multilayer continuous films, thickness dictates dual transport dynamics: sub-6.6 nm films exhibit surface/interface scattering-limited bulk conductivity (<em>σ</em> ∼ 3000 S cm<small><sup>−1</sup></small>, <em>τ</em> &gt; 6 ps), while thicker films (<em>t</em> &gt; 6.6 nm) transition to bulk-like metallic conduction (<em>σ</em> ∼ 13 000 S cm<small><sup>−1</sup></small>, <em>τ</em> &lt; 6 ps), achieving concurrent 48% microwave absorption at 6.6 nm and 19 dB shielding at 24 nm. The percolation-governed conductivity scaling and thickness-modulated electron transport establish design principles for optimizing MXene-based ultrathin electromagnetic functional materials in microwave absorption, shielding, and flexible sensing applications, bridging nanoscale structural engineering with macroscopic functionality.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 29","pages":" 17040-17056"},"PeriodicalIF":5.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d5nr01970b","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The microwave interaction of ultrathin Ti3C2Tx MXene films is governed by their nanosheet network-modulated conductivity. By integrating a transfer matrix model with the Drude model, this study reveals the dielectric response mechanisms of MXene films under microwave radiation, driven by nanosheet coverage (c) and thickness (t). For monolayer films, coverage-dependent conductivity transitions delineate two distinct regimes: (i) a discontinuous percolation regime (c < 80%) dominated by intra-flake electron transport (|εi/εr| < 1), resulting in high microwave transparency, and (ii) a metallic-like conduction regime (c > 80%) where synergistic intra-/inter-flake hopping (|εi/εr| > 1) enhances interfacial polarization and ohmic loss, enabling 27% maximum microwave absorption at a high sheet conductivity of ∼0.001 S (c = 93%). For multilayer continuous films, thickness dictates dual transport dynamics: sub-6.6 nm films exhibit surface/interface scattering-limited bulk conductivity (σ ∼ 3000 S cm−1, τ > 6 ps), while thicker films (t > 6.6 nm) transition to bulk-like metallic conduction (σ ∼ 13 000 S cm−1, τ < 6 ps), achieving concurrent 48% microwave absorption at 6.6 nm and 19 dB shielding at 24 nm. The percolation-governed conductivity scaling and thickness-modulated electron transport establish design principles for optimizing MXene-based ultrathin electromagnetic functional materials in microwave absorption, shielding, and flexible sensing applications, bridging nanoscale structural engineering with macroscopic functionality.

Abstract Image

超薄MXene导电薄膜的渗透驱动电子传输和厚度相关的微波吸收/屏蔽双重功能
超薄Ti3C2Tx MXene薄膜的微波相互作用受其纳米片网络调制电导率的控制。通过将传递矩阵模型与Drude模型相结合,揭示了微波辐射下MXene薄膜的介电响应机制,该机制受纳米片覆盖面积(c)和厚度(t)的驱动。对于单层薄膜,覆盖度相关的电导率转变描述了两种不同的模式:(i)由片内电子传递(εi/εr<1)主导的不连续渗透体系(c<80%),导致高微波透明度;(ii)类金属传导体系(c>80%),其中片内/片间的协同跳变(εi/εr>1)增强了界面极化和欧姆损失,在~0.001 S的高片电导率(c=93%)下实现了27%的最大微波吸收。对于多层连续薄膜,厚度决定了双重传输动力学:6.6 nm以下的薄膜表现出表面/界面散射限制的体导电性(σ~3000 S·cm-1, τ>6 ps),而较厚的薄膜(t>6.6 nm)转变为块状金属导电性(σ~ 13000 S·cm-1, τ<6 ps),在6.6 nm处同时实现48%的微波吸收和24 nm处的19 dB屏蔽。渗透控制的电导率缩放和厚度调制电子输运为优化mxene超薄电磁功能材料在微波吸收、屏蔽和柔性传感应用中的设计原则奠定了基础,将纳米级结构工程与宏观功能连接起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信