Jiyu Cai, Steve E. Trask, Zhenzhen Yang, Yingying Xie, Wenquan Lu, Hoai Nguyen, Yuzi Liu, Xiangbo Meng, Gabriel M. Veith, Hao Jia, Wu Xu, Zonghai Chen
{"title":"Deciphering coulombic loss in lithium-ion batteries and beyond","authors":"Jiyu Cai, Steve E. Trask, Zhenzhen Yang, Yingying Xie, Wenquan Lu, Hoai Nguyen, Yuzi Liu, Xiangbo Meng, Gabriel M. Veith, Hao Jia, Wu Xu, Zonghai Chen","doi":"10.1038/s41467-025-60833-y","DOIUrl":null,"url":null,"abstract":"<p>Lithium-ion batteries are pivotal for modern energy storage, yet accurately predicting their lifespan remains a critical challenge. While descriptors like coulombic efficiency are widely used to assess battery longevity, the unclear physical origins of coulombic losses cause semi-quantitative correlation with capacity, complicating battery development. Here, we combine high-precision leakage current and open-circuit-voltage measurements with charge conservation principles to explore microscopic charge consumptions at electrode-electrolyte interfaces across diverse chemistries. We demonstrate that coulombic loss arises from a synergy between local charge neutrality and global charge compensation, reconciling its quantitative correlation to capacity. Contrary to conventional assumptions equating coulombic loss with irreversible capacity loss, this framework resolves systematic overestimations and paradoxical phenomena in existing chemistries. Our findings establish physics-informed criteria for accelerated lifespan evaluation and guide rational design of long-life lithium-ion batteries and beyond.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"10 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60833-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium-ion batteries are pivotal for modern energy storage, yet accurately predicting their lifespan remains a critical challenge. While descriptors like coulombic efficiency are widely used to assess battery longevity, the unclear physical origins of coulombic losses cause semi-quantitative correlation with capacity, complicating battery development. Here, we combine high-precision leakage current and open-circuit-voltage measurements with charge conservation principles to explore microscopic charge consumptions at electrode-electrolyte interfaces across diverse chemistries. We demonstrate that coulombic loss arises from a synergy between local charge neutrality and global charge compensation, reconciling its quantitative correlation to capacity. Contrary to conventional assumptions equating coulombic loss with irreversible capacity loss, this framework resolves systematic overestimations and paradoxical phenomena in existing chemistries. Our findings establish physics-informed criteria for accelerated lifespan evaluation and guide rational design of long-life lithium-ion batteries and beyond.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.