Hao Liu, Bin Yang, Guangfu Liao, Baoyu Huang, Jun Li, Raul D. Rodriguez, Xin Jia
{"title":"Facilitating carrier kinetics in ultrathin porous carbon nitride through shear-repair strategy for peroxymonosulfate-assisted water purification","authors":"Hao Liu, Bin Yang, Guangfu Liao, Baoyu Huang, Jun Li, Raul D. Rodriguez, Xin Jia","doi":"10.1038/s41467-025-61185-3","DOIUrl":null,"url":null,"abstract":"<p>Achieving high specific surface area (HSSA) in graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) severely depolymerizes the molecular chain structure, resulting in sluggish carrier kinetic behaviors and thus moderated water purification performance in photocatalytic peroxymonosulfate (PMS) activation system. Herein, we report a versatile shear-repair strategy for fabricating ultrathin porous g-C<sub>3</sub>N<sub>4</sub> nanosheets with a thickness of 1.5 nm, HSSA (138.5 m<sup>2</sup> g<sup>−1</sup>), and highly polymerized molecular chains. This strategy accelerates exciton dissociation and charge carrier separation, with the exciton binding energy decreasing from 65.7 to 47.5 meV. Crucially, the electron-donating pollutant and electron-withdrawing PMS generate a microelectric field at the g-C<sub>3</sub>N<sub>4</sub> surface that activates PMS to generate <sup>1</sup>O<sub>2</sub> sustainably. Consequently, our catalyst exhibits an exceptional imidacloprid (IMD) removal performance with a rate constant of 0.405 min<sup>−1</sup> and remarkable PMS utilization efficiency (90% within 15 min). Moreover, under real conditions of sunlight irradiation, we observe an outstanding pollutants’ removal efficiency with a near-100% degradation rate over 20 days of continuous operation. Our work emphasizes the feasibility of synergistic molecular-level structural engineering for refining carrier kinetic behaviors in high-performance photocatalyst design.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"26 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61185-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving high specific surface area (HSSA) in graphitic carbon nitride (g-C3N4) severely depolymerizes the molecular chain structure, resulting in sluggish carrier kinetic behaviors and thus moderated water purification performance in photocatalytic peroxymonosulfate (PMS) activation system. Herein, we report a versatile shear-repair strategy for fabricating ultrathin porous g-C3N4 nanosheets with a thickness of 1.5 nm, HSSA (138.5 m2 g−1), and highly polymerized molecular chains. This strategy accelerates exciton dissociation and charge carrier separation, with the exciton binding energy decreasing from 65.7 to 47.5 meV. Crucially, the electron-donating pollutant and electron-withdrawing PMS generate a microelectric field at the g-C3N4 surface that activates PMS to generate 1O2 sustainably. Consequently, our catalyst exhibits an exceptional imidacloprid (IMD) removal performance with a rate constant of 0.405 min−1 and remarkable PMS utilization efficiency (90% within 15 min). Moreover, under real conditions of sunlight irradiation, we observe an outstanding pollutants’ removal efficiency with a near-100% degradation rate over 20 days of continuous operation. Our work emphasizes the feasibility of synergistic molecular-level structural engineering for refining carrier kinetic behaviors in high-performance photocatalyst design.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.