Facilitating carrier kinetics in ultrathin porous carbon nitride through shear-repair strategy for peroxymonosulfate-assisted water purification

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Hao Liu, Bin Yang, Guangfu Liao, Baoyu Huang, Jun Li, Raul D. Rodriguez, Xin Jia
{"title":"Facilitating carrier kinetics in ultrathin porous carbon nitride through shear-repair strategy for peroxymonosulfate-assisted water purification","authors":"Hao Liu, Bin Yang, Guangfu Liao, Baoyu Huang, Jun Li, Raul D. Rodriguez, Xin Jia","doi":"10.1038/s41467-025-61185-3","DOIUrl":null,"url":null,"abstract":"<p>Achieving high specific surface area (HSSA) in graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) severely depolymerizes the molecular chain structure, resulting in sluggish carrier kinetic behaviors and thus moderated water purification performance in photocatalytic peroxymonosulfate (PMS) activation system. Herein, we report a versatile shear-repair strategy for fabricating ultrathin porous g-C<sub>3</sub>N<sub>4</sub> nanosheets with a thickness of 1.5 nm, HSSA (138.5 m<sup>2</sup> g<sup>−1</sup>), and highly polymerized molecular chains. This strategy accelerates exciton dissociation and charge carrier separation, with the exciton binding energy decreasing from 65.7 to 47.5 meV. Crucially, the electron-donating pollutant and electron-withdrawing PMS generate a microelectric field at the g-C<sub>3</sub>N<sub>4</sub> surface that activates PMS to generate <sup>1</sup>O<sub>2</sub> sustainably. Consequently, our catalyst exhibits an exceptional imidacloprid (IMD) removal performance with a rate constant of 0.405 min<sup>−1</sup> and remarkable PMS utilization efficiency (90% within 15 min). Moreover, under real conditions of sunlight irradiation, we observe an outstanding pollutants’ removal efficiency with a near-100% degradation rate over 20 days of continuous operation. Our work emphasizes the feasibility of synergistic molecular-level structural engineering for refining carrier kinetic behaviors in high-performance photocatalyst design.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"26 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61185-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving high specific surface area (HSSA) in graphitic carbon nitride (g-C3N4) severely depolymerizes the molecular chain structure, resulting in sluggish carrier kinetic behaviors and thus moderated water purification performance in photocatalytic peroxymonosulfate (PMS) activation system. Herein, we report a versatile shear-repair strategy for fabricating ultrathin porous g-C3N4 nanosheets with a thickness of 1.5 nm, HSSA (138.5 m2 g−1), and highly polymerized molecular chains. This strategy accelerates exciton dissociation and charge carrier separation, with the exciton binding energy decreasing from 65.7 to 47.5 meV. Crucially, the electron-donating pollutant and electron-withdrawing PMS generate a microelectric field at the g-C3N4 surface that activates PMS to generate 1O2 sustainably. Consequently, our catalyst exhibits an exceptional imidacloprid (IMD) removal performance with a rate constant of 0.405 min−1 and remarkable PMS utilization efficiency (90% within 15 min). Moreover, under real conditions of sunlight irradiation, we observe an outstanding pollutants’ removal efficiency with a near-100% degradation rate over 20 days of continuous operation. Our work emphasizes the feasibility of synergistic molecular-level structural engineering for refining carrier kinetic behaviors in high-performance photocatalyst design.

Abstract Image

通过剪切修复策略促进超薄多孔氮化碳中载体动力学的过氧单硫酸盐辅助水净化
在光催化过氧单硫酸盐(PMS)活化体系中,石墨氮化碳(g-C3N4)的高比表面积(HSSA)导致分子链结构严重解聚,导致载体动力学行为缓慢,从而降低了水的净化性能。在此,我们报告了一种多功能剪切修复策略,用于制造厚度为1.5 nm的超薄多孔g- c3n4纳米片,HSSA (138.5 m2 g−1)和高度聚合的分子链。该策略加速了激子离解和载流子分离,使激子结合能从65.7 meV降低到47.5 meV。至关重要的是,供电子污染物和吸电子的PMS在g-C3N4表面产生一个微电场,激活PMS持续产生10o2。因此,我们的催化剂表现出优异的吡虫啉(IMD)去除性能,速率常数为0.405 min - 1, PMS利用率显著(15分钟内达到90%)。此外,在真实的阳光照射条件下,我们观察到污染物的去除效率非常出色,连续运行20天的降解率接近100%。我们的工作强调了协同分子水平结构工程在高性能光催化剂设计中改善载流子动力学行为的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信