{"title":"Asymmetric shifts in precipitation due to urbanization across global cities","authors":"Jinghua Xiong, Yuting Yang, Long Yang, Dawen Yang","doi":"10.1038/s41467-025-61053-0","DOIUrl":null,"url":null,"abstract":"<p>Urbanization alters precipitation patterns by modifying thermal, dynamic, and chemical processes in the atmosphere. However, its effect on precipitation regimes, particularly at the sub-daily scale, is poorly understood. In this work, we use a high-resolution, spatially continuous satellite precipitation dataset to examine urbanization-induced shifts across precipitation intensities over global cities. We show that urbanization generally causes asymmetric shifts, increasing lower-intensity events and decreasing higher-intensity ones, with distinct patterns in tropical monsoon regions. These shifts, primarily driven by changes in event frequency, lead to reduced precipitation variability in urban areas, particularly in temperate cities and those exhibiting higher urbanization levels. Sub-daily analysis reveals that lower-intensity precipitation most notably increases in the early morning, while higher-intensity events decrease in the late afternoon, dampening diurnal precipitation variability. These findings offer important observational evidence of how urbanization alters precipitation regimes and highlight the need for adaptive urban water management strategies.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"11 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61053-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Urbanization alters precipitation patterns by modifying thermal, dynamic, and chemical processes in the atmosphere. However, its effect on precipitation regimes, particularly at the sub-daily scale, is poorly understood. In this work, we use a high-resolution, spatially continuous satellite precipitation dataset to examine urbanization-induced shifts across precipitation intensities over global cities. We show that urbanization generally causes asymmetric shifts, increasing lower-intensity events and decreasing higher-intensity ones, with distinct patterns in tropical monsoon regions. These shifts, primarily driven by changes in event frequency, lead to reduced precipitation variability in urban areas, particularly in temperate cities and those exhibiting higher urbanization levels. Sub-daily analysis reveals that lower-intensity precipitation most notably increases in the early morning, while higher-intensity events decrease in the late afternoon, dampening diurnal precipitation variability. These findings offer important observational evidence of how urbanization alters precipitation regimes and highlight the need for adaptive urban water management strategies.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.