Mostafa Salehirozveh, Parisa Dehghani and Ivan Mijakovic*,
{"title":"Nanopore-Based Neurotransmitter Detection: Advances, Challenges, and Future Perspectives","authors":"Mostafa Salehirozveh, Parisa Dehghani and Ivan Mijakovic*, ","doi":"10.1021/acsnano.5c04662","DOIUrl":null,"url":null,"abstract":"<p >Neurotransmitters play a pivotal role in neural communication, synaptic plasticity, and overall brain function. Disruptions in neurotransmitter homeostasis are closely linked to various neurological and neuropsychiatric disorders, including Alzheimer’s disease, Parkinson’s disease, epilepsy, schizophrenia, depression, and amyotrophic lateral sclerosis. This review explores the critical role of neurotransmitters in neurological disorders and highlights recent advances in nanopore-based neurotransmitter detection. Solid-state nanopores (SSNs), with their superior mechanical and chemical durability, have emerged as highly sensitive molecular sensors capable of real-time monitoring of neurotransmitter dynamics. We discuss the integration of SSNs into diagnostic frameworks, emphasizing their potential for early disease detection and personalized therapeutic interventions. Additionally, we examine the complementary role of nanopipettes in neurotransmitter detection, focusing on their high spatial resolution and real-time monitoring capabilities. The review also addresses the challenges and future perspectives of nanopore-based sensing technology, including the need for improved sensitivity, stability, and reproducibility. By integrating insights from neuroscience, bioengineering, and nanotechnology, this review aims to provide a comprehensive overview of how nanopore sensing can revolutionize neurotransmitter analysis and contribute to the development of next-generation diagnostic and therapeutic approaches for neurological diseases.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 27","pages":"24404–24424"},"PeriodicalIF":16.0000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsnano.5c04662","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c04662","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Neurotransmitters play a pivotal role in neural communication, synaptic plasticity, and overall brain function. Disruptions in neurotransmitter homeostasis are closely linked to various neurological and neuropsychiatric disorders, including Alzheimer’s disease, Parkinson’s disease, epilepsy, schizophrenia, depression, and amyotrophic lateral sclerosis. This review explores the critical role of neurotransmitters in neurological disorders and highlights recent advances in nanopore-based neurotransmitter detection. Solid-state nanopores (SSNs), with their superior mechanical and chemical durability, have emerged as highly sensitive molecular sensors capable of real-time monitoring of neurotransmitter dynamics. We discuss the integration of SSNs into diagnostic frameworks, emphasizing their potential for early disease detection and personalized therapeutic interventions. Additionally, we examine the complementary role of nanopipettes in neurotransmitter detection, focusing on their high spatial resolution and real-time monitoring capabilities. The review also addresses the challenges and future perspectives of nanopore-based sensing technology, including the need for improved sensitivity, stability, and reproducibility. By integrating insights from neuroscience, bioengineering, and nanotechnology, this review aims to provide a comprehensive overview of how nanopore sensing can revolutionize neurotransmitter analysis and contribute to the development of next-generation diagnostic and therapeutic approaches for neurological diseases.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.